486 research outputs found

    Contribution of discourse and morphosyntax skills to reading comprehension in Chinese dyslexic and typically developing children

    Get PDF
    This study aimed at identifying important skills for reading comprehension in Chinese dyslexic children and their typically developing counterparts matched on age (CA controls) or reading level (RL controls). The children were assessed on Chinese reading comprehension, cognitive, and reading-related skills. Results showed that the dyslexic children performed significantly less well than the CA controls but similarly to RL controls in most measures. Results of multiple regression analyses showed that word-level reading-related skills like oral vocabulary and word semantics were found to be strong predictors of reading comprehension among typically developing junior graders and dyslexic readers of senior grades, whereas morphosyntax, a text-level skill, was most predictive for typically developing senior graders. It was concluded that discourse and morphosyntax skills are particularly important for reading comprehension in the non-inflectional and topic-prominent Chinese system. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR.

    Get PDF
    Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-α) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor necrosis factor-alpha (TNF-α) in ovarian cancer cells, which is regulated by promoter DNA hypomethylation as well as chromatin remodeling. Interestingly, this ovarian cancer-derived TNF-α induces TGF-α transcription in stromal fibroblasts through nuclear factor-κB (NF-κB). We further show that TGF-α secreted by stromal fibroblasts in turn promotes peritoneal metastasis of ovarian cancer through epidermal growth factor receptor (EGFR) signaling. Finally, we identify a TNFα-TGFα-EGFR interacting loop between tumor and stromal compartments of human omental metastases. Our results therefore demonstrate cancer epigenetics induces a loop of cancer-stroma-cancer interaction in omental microenvironment that promotes peritoneal metastasis of ovarian cancer cells via TNFα-TGFα-EGFR

    Epigenetic Inactivation of the miR-124-1 in Haematological Malignancies

    Get PDF
    miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2′-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study

    Functionally Orthologous Viral and Cellular MicroRNAs Studied by a Novel Dual-Fluorescent Reporter System

    Get PDF
    Recent research raised the possibility that some viral microRNAs (miRNAs) may function as orthologs of cellular miRNAs. In the present work, to study the functional orthologous relationships of viral and cellular miRNAs, we first constructed a dual-fluorescent protein reporter vector system for the easy determination of miRNA function. By expressing the miRNAs and the indicator and internal control fluorescent proteins individually from a single vector, this simple reporter system can be used for miRNA functional assays that include visualizing miRNA activity in live cells. Sequence alignments indicated that the simian virus 40 (SV40) encoded miRNA sv40-mir-S1-5p contains a seed region identical to that of the human miRNA hsa-miR423-5p. Using the new reporter system, it was found that sv40-mir-S1-5p and hsa-miR423-5p downregulate the expression of common artificial target mRNAs and some predicted biological targets of hsa-miR423-5p, demonstrating that they are functional orthologs. The human immunodeficiency virus 1 (HIV-1) encoded hiv1-miR-N367 also contains a seed sequence identical to that of the human miRNA hsa-miR192. Functional assays showed that hiv1-miR-N367 and hsa-miR192 could downregulate common artificial and predicted biological targets, suggesting that these miRNAs may also act as functional orthologs. Thus, this study presents a simple and universal system for testing miRNA function and identifies two new pairs of functional orthologs, sv40-mir-S1-5p and hsa-miR423-5p as well as hiv-1-miR-N367 and hsa-miR192. These findings also expand upon our current knowledge of functional homology and imply that a more general phenomenon of orthologous relationships exists between viral and cellular miRNAs

    Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism

    Get PDF
    Background: Biliary atresia (BA) is the most common obstructive cholangiopathy in neonates, often progressing to end-stage cirrhosis. BA pathogenesis is believed to be multifactorial, but the genetic contribution, especially for nonsyndromic BA (common form: > 85%) remains poorly defined. Methods: We conducted whole exome sequencing on 89 nonsyndromic BA trios to identify rare variants contributing to BA etiology. Functional evaluation using patients’ liver biopsies, human cell and zebrafish models were performed. Clinical impact on respiratory system was assessed with clinical evaluation, nasal nitric oxide (nNO), high speed video analysis and transmission electron microscopy. Findings: We detected rare, deleterious de novo or biallelic variants in liver-expressed ciliary genes in 31.5% (28/89) of the BA patients. Burden test revealed 2.6-fold (odds ratio (OR) [95% confidence intervals (CI)]= 2.58 [1.15–6.07], adjusted p = 0.034) over-representation of rare, deleterious mutations in liver-expressed ciliary gene set in patients compared to controls. Functional analyses further demonstrated absence of cilia in the BA livers with KIF3B and TTC17 mutations, and knockdown of PCNT, KIF3B and TTC17 in human control fibroblasts and cholangiocytes resulted in reduced number of cilia. Additionally, CRISPR/Cas9-engineered zebrafish knockouts of KIF3B, PCNT and TTC17 displayed reduced biliary flow. Abnormally low level of nNO was detected in 80% (8/10) of BA patients carrying deleterious ciliary mutations, implicating the intrinsic ciliary defects. Interpretation: Our findings support strong genetic susceptibility for nonsyndromic BA. Ciliary gene mutations leading to cholangiocyte cilia malformation and dysfunction could be a key biological mechanism in BA pathogenesis. Funding: The study is supported by General Research Fund, HMRF Commissioned Paediatric Research at HKCH and Li Ka Shing Faculty of Medicine Enhanced New Staff Start-up Fund

    A New Model for Raf Kinase Inhibitory Protein Induced Chemotherapeutic Resistance

    Get PDF
    Therapeutic resistance remains the most challenging aspect of treating cancer. Raf kinase inhibitory protein (RKIP) emerged as a molecule capable of sensitizing cancerous cells to radio- and chemotherapy. Moreover, this small evolutionary conserved molecule, endows significant resistance to cancer therapy when its expression is reduced or lost. RKIP has been shown to inhibit the Raf-MEK-ERK, NFκB, GRK and activate the GSK3β signaling pathways. Inhibition of Raf-MEK-ERK and NFκB remains the most prominent pathways implicated in the sensitization of cells to therapeutic drugs. Our purpose was to identify a possible link between RKIP-KEAP 1-NRF2 and drug resistance. To that end, RKIP-KEAP 1 association was tested in human colorectal cancer tissues using immunohistochemistry. RKIP miRNA silencing and its inducible overexpression were employed in HEK-293 immortalized cells, HT29 and HCT116 colon cancer cell lines to further investigate our aim. We show that RKIP enhanced Kelch-like ECH-associated protein1 (KEAP 1) stability in colorectal cancer tissues and HT29 CRC cell line. RKIP silencing in immortalized HEK-293 cells (termed HEK-499) correlated significantly with KEAP 1 protein degradation and subsequent NRF2 addiction in these cells. Moreover, RKIP depletion in HEK-499, compared to control cells, bestowed resistance to supra physiological levels of H2O2 and Cisplatin possibly by upregulating NF-E2-related nuclear factor 2 (NRF2) responsive genes. Similarly, we observed a direct correlation between the extent of apoptosis, after treatment with Adriamycin, and the expression levels of RKIP/KEAP 1 in HT29 but not in HCT116 CRC cells. Our data illuminate, for the first time, the NRF2-KEAP 1 pathway as a possible target for personalized therapeutic intervention in RKIP depleted cancers

    A Re-Examination of Global Suppression of RNA Interference by HIV-1

    Get PDF
    The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing

    Post-translational regulation contributes to the loss of LKB1 expression through SIRT1 deacetylase in osteosarcomas

    Get PDF
    background: The most prevalent form of bone cancer is osteosarcoma (OS), which is associated with poor prognosis in case of metastases formation. Mice harbouring liver kinase B1 (LKB1+/−) develop osteoblastoma-like tumours. Therefore, we asked whether loss of LKB1 gene has a role in the pathogenesis of human OS. methods: Osteosarcomas (n=259) were screened for LKB1 and sirtuin 1 (SIRT1) protein expression using immunohistochemistry and western blot. Those cases were also screened for LKB1 genetic alterations by next-generation sequencing, Sanger sequencing, restriction fragment length polymorphism and fluorescence in situ hybridisation approaches. We studied LKB1 protein degradation through SIRT1 expression. MicroRNA expression investigations were also conducted to identify the microRNAs involved in the SIRT1/LKB1 pathway. results: Forty-one per cent (106 out of 259) OS had lost LKB1 protein expression with no evident genetic anomalies. We obtained evidence that SIRT1 impairs LKB1 protein stability, and that SIRT1 depletion leads to accumulation of LKB1 in OS cell lines resulting in growth arrest. Further investigations revealed the role of miR-204 in the regulation of SIRT1 expression, which impairs LKB1 stability. conclusions: We demonstrated the involvement of sequential regulation of miR-204/SIRT1/LKB1 in OS cases and showed a mechanism for the loss of expression of LKB1 tumour suppressor in this malignancy

    Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple myeloma (MM) is a fatal malignancy ranking second in prevalence among hematological tumors. Continuous efforts are being made to develop innovative and more effective treatments. The preclinical evaluation of new therapies relies on the use of murine models of the disease.</p> <p>Methods</p> <p>Here we describe a new MM animal model in NOD-Rag1null IL2rgnull (NRG) mice that supports the engraftment of cell lines and primary MM cells that can be tracked with the tumor antigen, AKAP-4.</p> <p>Results</p> <p>Human MM cell lines, U266 and H929, and primary MM cells were successfully engrafted in NRG mice after intravenous administration, and were found in the bone marrow, blood and spleen of tumor-challenged animals. The AKAP-4 expression pattern was similar to that of known MM markers, such as paraproteins, CD38 and CD45.</p> <p>Conclusions</p> <p>We developed for the first time a murine model allowing for the growth of both MM cell lines and primary cells in multifocal sites, thus mimicking the disease seen in patients. Additionally, we validated the use of AKAP-4 antigen to track tumor growth <it>in vivo </it>and to specifically identify MM cells in mouse tissues. We expect that our model will significantly improve the pre-clinical evaluation of new anti-myeloma therapies.</p

    Obesity Reduces Bone Density Associated with Activation of PPARγ and Suppression of Wnt/β-Catenin in Rapidly Growing Male Rats

    Get PDF
    BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD) results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN) was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD) for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD) or a chow diet (low fat diet, LFD) fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA) were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life
    • …
    corecore