10 research outputs found

    Estimating the heritability of thermal tolerance in Acropora cervicornis and the physiological basis of adaptation that correlates to survival at elevated temperatures

    Get PDF
    Human activities have substantially increased the atmospheric concentrations of greenhouse gases, resulting in warmer ocean temperatures that are having a negative impact on reef corals, which are highly susceptible to changes in temperature. Understanding the degree to which species vary in their tolerance to elevated temperatures and whether this variation is heritable is important in determining their ability to adapt to climate change. In order to address this, Acropora cervicornis fragments from 20 genetically distinct colonies were kept at either ambient or elevated temperatures, and mortality was monitored for 26 days. Heritability of thermal tolerance was estimated using a clonal method comparing the difference in lifespan within and among clones in a one-way ANOVA, as well as a marker based method using the program MARK (Ritland 1996) to estimate relatedness between colonies. To understand the physiological basis of thermal tolerance, tissue samples from both treatments were taken after 12 hours to investigate gene expression associated with sub-lethal temperature stress at both the mRNA and the protein level. The results revealed that this population of A. cervicornis has a relatively high amount of total genetic variation in thermal tolerance (H2 = 0.528), but low additive genetic variation for this trait (h2 = 0.032). In addition, both gene expression and protein expression among colonies were highly variable and did not show consistent patterns related to differences in thermal tolerance among colonies. These results reveal that this population of A. cervicornis may have a limited capacity to respond to projected increases in ocean temperatures. In addition, the results suggest that the molecular basis of thermal tolerance in this species is complex and that there are potentially many genotypic combinations that can result in a heat-tolerant phenotype

    Genotype data not consistent with clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma.

    Get PDF
    Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology

    Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors

    Get PDF
    Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression. Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers. Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic

    Evolutionary comparisons of chelonid alphaherpesvirus 5 (ChHV5) genomes from fibropapillomatosis-afflicted green (chelonia mydas), Ooive ridley (lepidochelys olivacea) and kemp’s ridley (lepidochelys kempii) sea turtles

    Get PDF
    peer-reviewedThe spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth’s ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2035 single nucleotide polymorphisms (SNPs), 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific, with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic viru

    Does the mating call of the male plainfin midshipman, Porichthys notatus, reflect mate quality?

    No full text
    For signals in nature to be honest, they have to provide information about the sender’s body condition, size, or reproductive quality. The plainfin midshipman (Porichthys notatus) is a model for the study of acoustic signals due to their importance in its social and reproductive behavior. In order to test whether larger males produce louder and lower frequency calls, males were recorded at night and subsequently measured. Overall, loudness of the mate call was significantly positively correlated with body size and swim bladder volume. Body size and swim bladder volume were also significantly correlated with frequency of the first five harmonics; however this correlation was positive. Loudness of the second and the third harmonic relative to the first harmonic also increase with body size and tend to be louder than or the same as the fundamental frequency in larger males. Based on preliminary data, the plainfin midshipman does seem to exhibit honest signals that provide information about the sender’s size, especially in regards to amplitude

    Genetic differences in thermal tolerance among colonies of threatened coral Acropora cervicornis: Potential for adaptation to increasing temperature

    No full text
    Climate change is resulting in warmer temperatures that are negatively impacting corals. Understanding how much individuals within a population vary in their thermal tolerance and whether this variation is heritable is important in determining whether a species can adapt to climate change. To address this, Acropora cervicornis fragments from 20 genetically distinct colonies collected from the Coral Restoration Foundation Tavernier nursery (Florida, USA) were kept at either ambient (28 1C) or elevated (32 1C) temperatures, and mortality was monitored for 26 d. Both broad-sense (H2) and narrow-sense (h2) heritability of thermal tolerance were estimated to determine the amount of genetic variation underlying survival to elevated temperature. To understand the physiological basis of thermal tolerance, tissue from both treatments was taken 12 h after the start of the experiment to investigate gene expression at the mRNA and protein level between tolerant and susceptible colonies. Results revealed that this population has considerable total genetic variation in thermal tolerance (H 2 = 0.528), but low variance in relatedness among colonies prevented us from making any conclusions regarding h2. Despite high transcriptomic variability among and within colonies, 40 genes were consistently and significantly different between tolerant and susceptible colonies, and could be potential biomarkers for thermal tolerance should they be verified in a larger sample. Overall, the results suggest that this population has substantial genetic variation for traits that directly impact thermal tolerance; however, their response to projected increases in temperature will depend on more precise estimates of the additive components of this variation (h2)

    Sea turtle fibropapilloma tumors share genomic drivers and therapeutic vulnerabilities with human cancers

    Get PDF
    Wildlife populations are under intense anthropogenic pressures, with the geographic range of many species shrinking, dramatic reductions in population numbers and undisturbed habitats, and biodiversity loss. It is postulated that we are in the midst of a sixth (Anthropocene) mass extinction event, the first to be induced by human activity. Further, threatening vulnerable species is the increased rate of emerging diseases, another consequence of anthropogenic activities. Innovative approaches are required to help maintain healthy populations until the chronic underlying causes of these issues can be addressed. Fibropapillomatosis in sea turtles is one such wildlife disease. Here, we applied precision-medicine-based approaches to profile fibropapillomatosis tumors to better understand their biology, identify novel therapeutics, and gain insights into viral and environmental triggers for fibropapillomatosis. We show that fibropapillomatosis tumors share genetic vulnerabilities with human cancer types, revealing that they are amenable to treatment with human anti-cancer therapeutics

    Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics

    Get PDF
    Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally coinduced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species

    Fibropapillomatosis and chelonid alphaherpesvirus 5 infection in kemp’s ridley sea turtles (lepidochelys kempii)

    Get PDF
    Fibropapillomatosis (FP), a debilitating, infectious neoplastic disease, is rarely reported in endangered Kemp’s ridley sea turtles (Lepidochelys kempii). With this study, we describe FP and the associated chelonid alphaherpesvirus 5 (ChHV5) in Kemp’s ridley turtles encountered in the United States during 2006–2020. Analysis of 22 case reports of Kemp’s ridley turtles with FP revealed that while the disease was mild in most cases, 54.5% were adult turtles, a reproductively valuable age class whose survival is a priority for population recovery. Of 51 blood samples from tumor-free turtles and 12 tumor samples from turtles with FP, 7.8% and 91.7%, respectively, tested positive for ChHV5 DNA via quantitative polymerase chain reaction (qPCR). Viral genome shotgun sequencing and phylogenetic analysis of six tumor samples show that ChHV5 sequences in Kemp’s ridley turtles encountered in the Gulf of Mexico and northwestern Atlantic cluster with ChHV5 sequences identified in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles from Hawaii, the southwestern Atlantic Ocean, and the Caribbean. Results suggest an interspecific, spatiotemporal spread of FP among Kemp’s ridley turtles in regions where the disease is enzootic. Although FP is currently uncommon in this species, it remains a health concern due to its uncertain pathogenesis and potential relationship with habitat degradatio

    Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors

    Get PDF
    Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression. Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers. Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic
    corecore