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ABSTRACT 

Human activities have substantially increased the atmospheric concentrations of 

greenhouse gases, resulting in warmer ocean temperatures that are having a negative impact on 

reef corals, which are highly susceptible to changes in temperature. Understanding the degree to 

which species vary in their tolerance to elevated temperatures and whether this variation is 

heritable is important in determining their ability to adapt to climate change. In order to address 

this, Acropora cervicornis fragments from 20 genetically distinct colonies were kept at either 

ambient or elevated temperatures, and mortality was monitored for 26 days. Heritability of 

thermal tolerance was estimated using a clonal method comparing the difference in lifespan 

within and among clones in a one-way ANOVA, as well as a marker based method using the 

program MARK (Ritland 1996) to estimate relatedness between colonies. To understand the 

physiological basis of thermal tolerance, tissue samples from both treatments were taken after 12 

hours to investigate gene expression associated with sub-lethal temperature stress at both the 

mRNA and the protein level. The results revealed that this population of A. cervicornis has a 

relatively high amount of total genetic variation in thermal tolerance (H2 = 0.528), but low 

additive genetic variation for this trait (h2 = 0.032). In addition, both gene expression and protein 

expression among colonies were highly variable and did not show consistent patterns related to 

differences in thermal tolerance among colonies. These results reveal that this population of A. 

cervicornis may have a limited capacity to respond to projected increases in ocean temperatures. 

In addition, the results suggest that the molecular basis of thermal tolerance in this species is 

complex and that there are potentially many genotypic combinations that can result in a heat-

tolerant phenotype.  
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INTRODUCTION 

Human activities have substantially increased the atmospheric concentrations of 

greenhouse gases, resulting in warmer air and ocean temperatures that are having a negative 

impact on marine ecosystems worldwide (IPCC 2013). This is a dire threat to reef corals and 

their algal endosymbionts, which can both suffer from heat stress from changes as small as 1°C 

above long-term regional maximum temperatures (Goreau and Hayes 1994; Coles and Brown 

2003; Oliver and Palumbi 2011). Higher ocean temperatures and irradiance levels (Brown et al. 

2000; Takahashi and Murata, 2008) have repeatedly been reported to disrupt the symbiosis 

between corals and their algal endosymbionts, leading to higher occurrences of expulsion of the 

endosymbionts from the coral tissue, resulting in coral bleaching and mortality (Glynn 1996; 

Hoegh-Guldberg 1999; Douglas 2003; Csaszar et al. 2009). Corals rely on their endosymbionts 

for nutrients, which supply up to 95% of the coral host’s energy requirements (Muscatine 1990; 

Jones et al. 2008); if average temperatures continue to increase above their temperature 

threshold, coral populations will be less likely to recover and will suffer increased mortality. 

There are a number of ways in which corals can respond to a changing thermal 

environment. Corals can respond to temperature changes within a single generation by adjusting 

their thermal tolerance through acclimatization or by shifting the concentration of different 

Symbiodinium clades to better suit their environment (Jones et al. 2008; Sampayo et al. 2008; 

Baums et al. 2014). Corals can also respond to temperature changes through short term cross 

generation processes in which individual colonies inherit greater tolerance from parents who 

have been previously exposed to stress, likely through epigenetic inheritance (Hoegh-Guldberg 

2014). Finally, colonies with greater tolerance to increasing sea surface temperature possess 

alleles that lead to increased survival and reproductive success, thereby increasing the 

2 



frequencies of these beneficial alleles and leading to local adaptation in coral populations 

(Hoegh-Guldberg 2014). However, evolution by means of natural selection is possible only if 

genetic variation exists within a population for traits that affect fitness (Fisher 1930). Therefore, 

in order to determine whether coral populations are likely to have the ability to adapt to predicted 

changes in climate, estimates of adaptive genetic variation in traits related to thermotolerance are 

needed. It is also essential to investigate differences in gene expression between colonies 

exposed to thermal stress in order to understand what loci may underlie differences in thermal 

tolerance.  

Several studies have shown that gene expression changes within coral individuals when 

under heat stress. While most studies have been able to confirm that gene expression can differ 

significantly among different coral genotypes under heat stress (Csaszar et al. 2009; Seneca and 

Palumbi 2015), and that coral genotype can significantly impact coral thermal tolerance (Jin et 

al. 2016), only a few studies have focused on quantifying the genetic variation present in these 

traits (Csaszar et al. 2010; Dixon et al. 2015). In many cases, it can be difficult to investigate 

gene expression differences and differentiate between acclimatization in the short term and 

adaptive genetic variation in the long term. Previous studies have relied on reciprocal 

transplantation (Barshis et al. 2010; Kenkel and Matz 2016), or, in the case of other organisms, 

multiple generations of controlled breeding experiments, to successfully estimate the amount of 

genetic variation present in a trait, or heritability. Controlled breeding experiments are difficult 

to accomplish in a reasonable time frame with the time to sexual maturity and the long lifespans 

of many coral species (Chamberland et al. 2016). Some studies have overcome these constraints 

by crossing adults of different genotypes and investigating genetic variance in the larvae 

produced (Polato et al. 2013), but the phenotypes expressed in the planktonic larval stage may 
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not translate well to a sessile adult stage. Fortunately, with the advent of molecular genotyping 

and the ability of corals to be fragmented to propagate clones, studies can be designed to 

incorporate the effects of coral genotype on gene expression and the phenotype of thermal 

tolerance (Baums et al. 2005, 2009, 2010; Carlon et al. 2011; Csaszar et al. 2009, 2010; Jin et al. 

2016; Ladd et al. 2017).   

With the threat of global warming, much research has focused on not only identifying 

and measuring genetic variation in thermal tolerance, but also on understanding the underlying 

physiological mechanisms of thermal tolerance and coral bleaching. Previous work has shown 

consistent changes in the expression of ubiquitin (Barshis et al. 2010), ferritin (Csaszar et al. 

2009), Hsp70 (Csaszar et al. 2009), and genes regulating apoptosis, ribosomal RNA and mRNA 

processing (Bay and Palumbi 2014; Seneca and Palumbi 2015) in either coral from different 

thermal environments or from different experimental temperature treatments. While many of 

these studies have been able to connect temperature stress with patterns of gene expression, these 

studies have not been able to connect gene expression following a short term temperature stress 

to life span during a long term temperature exposure. This is truly important when trying to 

quantify the potential for adaptation, since differences in survival can have implications for 

reproductive success.  

In order to understand the ability of corals to adapt to warming ocean temperatures, the 

amount of genetic variation in thermal tolerance among nursery colonies of the staghorn coral 

Acropora cervicornis was estimated, and patterns of gene expression at both the mRNA and 

protein level were measured and tested for correlations to survival under thermal stress. This 

species was selected for study due to its rapid population decline and threatened status under the 

United States Endangered Species Act (2006) (NOAA 2006). Populations of A. cervicornis have 
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declined by up to 98% since 1980 throughout their natural range, and this has mainly been 

attributed to disease outbreaks as well as temperature and salinity variation, bleaching, human 

impacts, and low genetic diversity (NOAA 2006). While a recent study has determined that there 

is high genetic diversity at neutral genetic markers among A. cervicornis along the Florida Reef 

Tract (Drury et al. 2016), the amount of genetic variation in traits related to thermal tolerance as 

well as biomarkers correlated to survival have yet to be measured in this species. Determining 

whether there is adaptive genetic variation of thermal tolerance present within these nursery 

populations will provide information on whether outplanting can be used to promote adaptation 

in wild populations (van Oppen et al. 2015). 

 

MATERIALS AND METHODS 

Collection of Corals and Heat-Stress Experiments 

 A total of 13 fragments ~8-9 cm in length were obtained from each of 20 genetically 

distinct colonies of the staghorn coral A. cervicornis from the Coral Restoration Foundation’s 

Tavernier offshore nursery (24°58’58.8”N 80°26’07.8”W by 24°58.51.6”N 80°26’07.8”W by 

24°55’04.8”N 80°26’15.0”W by 24°58’58.8”N 80°26’15.0”W). Colonies were fragmented and 

maintained at the nursery for a minimum of 30 days to heal before being transported to the Keys 

Marine Laboratory located in Layton, FL. Fragments were then given 48 h to acclimate at 

ambient temperature (27 – 29 °C) to lab conditions. One fragment per genotype was immediately 

flash frozen for genotyping of the coral host. The remaining fragments were then randomly 

assigned to positions within each of six separate tanks, such that each tank contained two 

fragments per genotype from all 20 genotypes. Following acclimation, temperature was 

increased over the course of six hours to 32 °C (± 1°C) in three of the tanks, while three of the 
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tanks were kept as controls and were maintained at ambient temperature. After 12 hours of 

elevated temperature exposure, one fragment per genotype was removed from each tank and was 

flash frozen for molecular analysis of short term stress. The survival of the remaining fragments 

was measured for the remainder of the experiment for a total of 26 days. Pulse amplitude 

modulated (PAM) fluorometry was used to measure the Fv/Fm for each fragment twice daily at 

approximately 0730 and 1930. Mortality was determined once Fv/Fm scores for individual 

fragments reached < 0.2 for two consecutive time periods and confirmed by total loss of coral 

tissue. Previous studies have shown that these scores correspond to severe bleaching and 

mortality (Rasher and Hay 2010).  

 

Genotyping of Coral Hosts  

 A total of 15 microsatellite loci were used to genotype each of the coral colonies by using 

primers developed in Acropora palmata by Baums et al. (2005, 2009), which have been 

previously shown to amplify in A. cervicornis (van Oppen et al. 2000; Vollmer and Palumbi 

2002; Baums et al. 2005, 2009, 2010). Fragments of approximately 2 – 3 cm2 of tissue with 

skeleton from each colony were digested in CHAOS solution [4 M guanidine thiocyanate, 0.1% 

N-lauroyl sarcosine sodium, 10 mM Tris pH 8, 0.1 M 2-mercaptoethanol (Fukami et al. 2004)] 

for seven days at room temperature and then stored at – 80°C until extraction. The DNA 

extractions were performed following the protocol outlined in Levitan et al. (2011) and the 

resulting DNA was then stored at – 20°C until ready for use in PCR reactions. The PCR reaction 

mixture consisted of 2.5 µL of 10X PCR buffer (Invitrogen), 1.5 µL of 50 mM MgCl2, 0.5 µL of 

10 mM dNTPs, 0.2 µL of Taq (Invitrogen), 0.2 µL of forward primer (10 µM), 0.4 µL of reverse 

primer (10 µM), 1.5 µL of DNA template, and nuclease free water to bring to a total volume of 
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26.5 µL. The PCR amplification was carried out with an initial denaturation step at 95°C for 5 

min followed by 35 cycles of 95°C for 20 s, annealing at 50 – 55°C for 20 s, and 72°C for 30 s, 

followed by a final extension at 72°C for 30 min on a BioRad C1000 Touch Thermal Cycler. 

The PCR products were sent to UF ICBR Gene Expression & Genotyping for sequencing using 

an AB 3730 with an internal size standard (LIZ600) for determining fragment size. 

Electropherograms were analyzed with GeneMarker software V2.7.0 (SoftGenetics).  

 

Heritability Estimation 

Broad sense (H2) and narrow sense (h2) heritability of thermal tolerance in A. cervicornis 

were estimated in this study utilizing distinct methods. Broad sense heritability was estimated 

following the clonal method described in Csaszar et al. (2010) and Falconer and MacKay (1996) 

where phenotypic variance is partitioned into genetic and environmental components based on 

estimates of among and within coral clone variation in survival at elevated temperatures using an 

analysis of variance (ANOVA). Thermal tolerance in this study was defined as the difference 

between the mean lifespan of fragments maintained at elevated temperatures and the mean 

lifespan of fragments from the same colony maintained at ambient temperatures. Therefore, 

colonies with a smaller difference in lifespan between elevated temperature and control were 

considered to have a higher thermal tolerance, while colonies with larger differences were 

considered to have lower thermal tolerance. Broad sense heritability was estimated using a one-

way ANOVA (IBM SPSS Statistics 25) with thermal tolerance as the dependent variable and 

coral genotype as the main effect. The ANOVA allows the estimation of the amount of variance 

in thermal tolerance within fragments from the same colony (VE) as well as the amount of 

variance in thermal tolerance among colonies of different genotype (VG). The summation of 
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these variance components provides an estimate of VP, the total phenotypic variance of a trait, 

and allows H2 to be calculated using the below equation (Falconer and MacKay 1996): 

𝐻2 =
𝑉𝐺
𝑉𝑃

 

Narrow sense heritability was estimated using a marker based computer program, MARK 

(Ritland 1996), which uses a mathematical regression model developed by Lynch and Ritland 

(1999) to calculate the relatedness between individual fragments based on their multi-locus 

genotype. The program then compares the relatedness coefficient to an estimate of phenotypic 

similarity (in this case thermal tolerance) in order to calculate the narrow sense heritability (h2) 

of the trait in question. High heritability is indicated by more related individuals possessing a 

similar phenotype and less related individuals possessing dissimilar phenotypes. One hundred 

bootstraps were performed on the estimate of h2 and a bootstrap percentile test was used to 

determine if the estimate of h2 was significantly different from bootstrapped values at α = 0.05. 

Narrow sense heritability is based on the proportion of additive genetic variance in a trait, which 

is the only form of genetic variance that can respond to selection (Lande and Shannon 1996). 

 

Gene Expression 

 Three fragments per genotype per treatment were flash frozen 12 hours after the initiation 

of the experiment to look at gene expression at both the mRNA and the protein level. For both 

investigations, the three most thermal tolerant genotypes and the three least thermal tolerant 

genotypes, as determined by the time of mortality following heat stress (see Results), were used 

to determine the effect of expression level or concentration of stress biomarkers on thermal 

tolerance. Three control and three heated samples were included for each genotype for a total of 

36 samples. In addition, for expression at the protein level, all fragments were included in a 
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correlation analysis to determine if there were significant correlations between biomarker 

concentrations and difference in lifespan following a long term thermal stress (N=120).  

For mRNA expression, the entire transcriptome was analyzed in order to identify 

potential loci that may be involved in thermal tolerance in this species, whereas for protein 

expression, relative concentrations and activity were measured for the following four molecules: 

catalase, heat shock protein 70 (Hsp70), ubiquitin, and 4-hydroxynonenal (4HNE). These 

biomarkers were chosen due to their responses under elevated temperature stress in other coral 

species (Csaszar et al. 2009; Barshis et al. 2010; Seneca et al. 2010; Ross et al. 2013). Elevation 

in reactive oxygen species due to thermal stress often results in an upregulation of catalase, an 

enzyme that breaks down H2O2 into O2 and H2O, and a greater abundance of 4HNE, a molecule 

produced by reactive lipid peroxides (Halliwell and Gutteridge 1999; Halliwell 2006; Barshis et 

al. 2010; Fisher et al. 2012; Ross et al. 2013). Ubiquitin is a cellular protein tag that marks 

proteins for degradation, and higher levels can be indicative of elevated levels of stress (Hawkins 

1991; Barshis et al. 2010; Jin et al. 2016), and Hsp70 is a molecular chaperone that is often 

found to be upregulated in response to thermal stress and aids in maintaining protein structure 

and function following heat related denaturation (Feder and Hofmann 1999; Barshis et al. 2010, 

2013; DeSalvo et al. 2010).  

 For mRNA expression, total RNA was extracted from a small portion (< 1 cm) of each 

fragment using a TRI Reagent extraction (ThermoFisher Scientific), then purified using RNeasy 

columns (Qiagen) following the methods of Bay et al. (2009). Quality and concentration of total 

RNA was determined via spectrophotometer readings at 260 and 280 nm. The total RNA was 

then fragmented by incubating at 95 °C for 15 minutes and used to synthesize first-strand cDNA 

with adapters at both 5’ and 3’ ends (Matz et al. 1999; Meyer et al. 2011) using a PrimeScript 

9 



First Strand cDNA synthesis kit (Clontech) per the manufacturer’s instructions. The second 

strand of cDNA was synthesized and amplified using the following PCR reaction: 0.5 µL of 

dNTPs (2.5 mM each), 2.5 µL of 10x PCR buffer, 0.5 µL each of 10 µM of both adapter 

sequences, 0.5 µL of Klentaq1 polymerase (DNA Polymerase Technology), and 10 µL of first 

strand cDNA in a total volume of 30 µL. The PCR amplification was carried out on a BioRad 

C1000 Touch Thermal Cycler and carried out as follows: an initial denaturation step at 94°C for 

2 min followed by 15 cycles of 94 °C for 30 s, 63 °C for 1 min, and 68 °C for 2 min. Each cDNA 

sample was labelled with a specific combination of two barcodes and gel-extracted using a 

MinElute Gel Extraction kit (Qiagen) to purify the size fraction (400 – 500 bp) for sequencing.  

Barcoded samples were pooled for sequencing on the Illumina HiSeq 2500 at the Case 

Western Reserve University School of Medicine Genomics Core and the libraries were 

sequenced with single-end 50 bp read lengths, resulting in a total of 608,536,472 raw reads. A 

custom perl script provided by M.V. Matz was used to discard reads sharing the same sequence 

as the read and degenerate adaptor (PCR duplicates) and to trim the leader sequence from 

remaining reads (Kenkel and Matz 2016). The fastx_toolkit was then used, following the 

protocol of Kenkel and Matz (2016), to trim reads after a homopolymer run of ‘A’ ≥ 8 bases was 

encountered, to retain reads with a minimum sequence length of 20 bases, and to quality filter, 

requiring PHRED of at least 20 over 90% of the read. After the removal of PCR duplicates and 

quality trimming, 720,646 reads remained. The A. cervicornis transcriptome (Libro et al. 2013), 

consisting of 95,389 transcripts with a N50 of 977, was downloaded from NCBI and annotated 

using custom perl scripts and protocol provided by M.V. Matz. Filtered reads were mapped to 

this reference transcriptome with Bowtie2, and read counts were assembled by isogroup, groups 

of sequences potentially originating from the same gene, or with sufficiently high sequence 
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similarity to justify the assumption that they serve the same function, using a custom perl script 

provided by M.V. Matz (Kenkel and Matz 2016). Reads mapping to multiple isogroups were 

discarded. A total of 301,333 transcripts mapped against the transcriptome, with an overall 

alignment rate of 41.81%, and these unique reads mapped to 20,471 coral isogroups. 

Differential expression (DESeq2) was carried out in the R statistical environment (v 

3.4.0, R Foundation for Statistical Computing) following the methods of and using the R scripts 

provided by Kenkel and Matz (2016) for TagSeq analysis. Low-expression genes (those with less 

than a mean count of 3) were removed from the dataset, leaving 188 genes for DESeq2 analysis. 

Gene counts were normalized and log-transformed using a regularized log transform with the 

command rlog() in DESeq2 for subsequent analyses. A principal coordinate analysis (PCoA) was 

performed in order to cluster samples by treatment (control vs heated) and by tolerance (tolerant 

vs susceptible), as well as to allow statistical tests to verify significance of the observed 

groupings. A matrix of pairwise “Manhattan” distances (sum of log-fold differences across all 

genes) among the 36 samples was constructed for PCoA, and the results plotted using principal 

coordinates one and two.  

Differences in gene expression among samples were analyzed using a two-way factorial 

ANOVA with genotype and treatment as main effects, followed by an additional two-way 

factorial ANOVA with tolerance and treatment as main effects. Each of these models were 

included in the DESeq2 analysis for determining differentially expressed genes (DEGs). The 

likelihood ratio test (LRT) was used for factors with greater than two levels (genotype, genotype 

by treatment interaction, tolerance by treatment interaction), while the Wald test was used for 

factors with two levels (treatment, tolerance). For significant DEGs in relation to thermal 

tolerance, the nucleotide sequences were extracted from the A. cervicornis transcriptome (Libro 

11 



et al. 2013) and each sequence was aligned against the NCBI protein database using blastx 

(NCBI) so as to establish likely function. In order to determine whether gene expression of the 

identified DEGs had a significant effect on thermal tolerance, the average gene counts for each 

significant DEG were compared among genotypes and between tolerance groups using either a 

two-way ANOVA or Scheirer-Ray Hare extension for Kruskal Wallis if assumptions for 

normality were not met (IBM SPSS Statistics 25).  

For protein expression, fragments were airbrushed with a 50 mmol sodium phosphate 

buffer containing 0.05 mol/L dithiothreitol and lyophilized. The lyophilized tissue was 

resuspended in sodium phosphate buffer before use. Catalase activity within coral tissue was 

measured using the Amplex® Red Catalase Assay Kit (ThermoFisher Scientific) per the 

manufacturer’s instructions, and then adjusted for the total amount of protein (U activity /mg 

total protein) as measured using the PierceTM BCA Protein Assay Kit (ThermoFisher Scientific) 

per the manufacturer’s instructions (Ross et al. 2013).  

Hsp70, ubiquitin, and 4HNE levels were first detected in samples through immunoblot 

assays following the methods of Barshis et al. (2010), and then quantified through ELISA. In 

each well, 50 µg of total protein per sample were added to 10 µL of 2x Laemmli SDS-PAGE 

sample buffer (Bio-Rad). Positive controls consisted of 5 – 10 µg of Heat Shocked HeLa Cell 

Lysate (ADI-LYC-HL101-F, Enzo Life Sciences) for Hsp70 and 4HNE-conjugates, respectively, 

and Rat Brain Tissue Extract for ubiquitin-conjugates (ADI-LYT-RB100-F, Enzo Life Sciences) 

following the methods of Barshis et al. (2010). All samples, standards, and positive controls were 

loaded into Mini PROTEAN TGX precast gels (4-20%) (Bio-Rad), and run for approximately 30 

min at 200 V on a Mini-PROTEAN Tetra Vertical Electrophoresis Cell (Bio-Rad). Protein 
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transfer was performed in a Mini TransBlot Cell (Bio-Rad) onto an Immuno-Blot PVDF 

membrane (Bio-Rad) at 100 V for one hour.  

Membranes were blocked overnight in 50 mL of 10% nonfat dry milk in Tris buffer 

saline (TBS, 0.05 M TrisBase, 0.15 M NaCl, pH 7.6) at 4 °C and  then incubated at 4 °C 

overnight with primary antibody diluted 1:2000 in 1% nonfat dry milk in TBS (Hsp70: Cat. 

#ADI-SPA-822, Enzo Life Sciences; ubiquitin: Cat. #ADI-SPA-200, Enzo Life Sciences; 4HNE: 

Cat. #AB5605, EMD Millepore) (Barshis et al. 2010). Following the primary antibody 

incubation, membranes were incubated at room temperature for 1 hour with secondary antibody 

diluted 1:10,000 in 1% nonfat dry milk in TBS (anti-mouse alkaline phosphatase (AP) 

conjugated: Cat #A3562, Sigma-Aldrich; anti-rabbit AP conjugated: Cat #A0418, Sigma-

Aldrich; anti-goat AP conjugated: Cat #A7650, Sigma-Aldrich) (Barshis et al. 2010). 

Afterwards, a BCIP/NBT Alkaline Phosphatase Substrate Kit (Vector Laboratories) was used to 

visualize detection of the protein biomarkers by the primary antibody, per the manufacturer’s 

instructions. All blot images were recorded using an Amersham Imager 600 (GE Healthcare Life 

Sciences).  

For ELISA, 25 µg total protein per sample were added to 100 µL of 0.2 M sodium 

carbonate-bicarbonate buffer (pH 9.4) per well on a 96-well plate; 100 µL of phosphate buffer 

saline (PBS, 0.01 M monobasic NaH2PO4, 0.15 M NaCl, pH 7.2 – 7.4) were used as a blank. 

Both primary and secondary antibody dilutions were 1:10,000 in 1% nonfat dry milk in PBS. A 

TMB Substrate Kit (ThermoFisher Scientific) was used for the detection of Hsp70, ubiquitin, 

and 4HNE. Absorbance was measured at 450 nm using a Synergy HT plate reader (BioTek) and 

analyzed using Gen5 (BioTek). All samples and blanks were run in triplicate. 
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In order to determine whether the expression of biomarkers at the protein level had a 

significant effect on thermal tolerance, the mean relative concentrations or the mean activity of 

each biomarker were compared between the three most thermal tolerant and the three least 

tolerant genotypes using a two-way ANOVA or Scheirer-Ray-Hare extension for Kruskal Wallis 

if assumptions for normality were not met (IBM SPSS Statistics 25). A second analysis was 

performed utilizing all 20 genotypes to determine if mean relative concentrations or mean 

activity of each biomarker correlated with thermal tolerance using either a Pearson correlation or 

Spearman’s Rho if assumptions for normality were not met (IBM SPSS Statistics 25).  

 

RESULTS 

Heritability Estimation 

 During the long term temperature stress, it was discovered that one of the heated tanks 

had elevated temperatures of 1 °C higher than the other two heated tanks for a period of 

approximately 12 hours. When a two-way ANOVA was performed, there was a significant tank 

effect due to this temperature difference among heated tanks (F2,38 = 3.963, p = 0.027) which  

disappeared once the aberrant tank was removed from the data set (F1,19 = 0.416, p = 0.527). 

Therefore, all subsequent analyses involving difference in lifespan were conducted without the 

inclusion of that tank.  

The lifespan of A. cervicornis coral fragments was significantly affected by temperature. 

While all of the control fragments survived the entire length of the experiment (612 hours) and 

showed no decrease in health according to Fv/Fm scores, all fragments maintained at elevated 

temperature showed signs of decline in Fv/Fm after 204 hours (Figure 1), and heated fragments 

had a significantly reduced lifespan compared to the controls, with fragments surviving 474.15 
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hours on average under thermal stress (F1,118 = 768.508, p < 0.001 ). However, this reduction in 

lifespan relative to the controls was not consistent across all coral genotypes (F1,19 = 3.15, p = 

0.008) (Figure 2). The average difference in lifespan between control and treatment fragments 

varied from 72 to 216 hours among genotypes, with genotypes U33 (p = 0.041) and M7 (p = 

0.041) having significantly lower thermal tolerance than genotype M5 according to a Tukey’s 

HSD post hoc test (Figure 2). The three genotypes that had the lowest average difference in 

lifespan and therefore the highest thermal tolerance were M3, M5, and U58, while the three 

genotypes that had the highest average difference in lifespan and therefore the lowest thermal 

tolerance were M7, U1, and U33. These genotypes differed by at least 90 hours of lifespan 

differential. These six genotypes were then used for comparisons of mRNA and protein 

expression between tolerant and susceptible genotypes in later analyses (see below). The 

significant differences in lifespan among genotypes resulted in a significant broad sense 

heritability of temperature tolerance (H2 = 0.528). However, the narrow sense heritability 

estimate was much lower (h2 = 0.032), and was not significantly different from bootstrapped 

values.  

 

Gene Expression 

Although the three most thermal tolerant and the three most susceptible genotypes 

differed greatly in their long term survival to a thermal stress, there was a great deal of overlap in 

overall gene expression at the mRNA level between both treatments (control vs heated) and both 

tolerance groups (tolerant vs susceptible) following 12 hours of elevated temperature exposure 

(Figure 3). When testing the effects of genotype, treatment, and their interaction, it was found 

that overall patterns of gene expression did not differ significantly due to treatment (F1,24 = 0.182,  
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p = 0.182), while both genotype (F5,24 = 2.2310, p = 0.001) and the genotype by treatment 

interaction (F5,24 = 1.5544, p = 0.010) had significant effects on differences in gene expression 

(Table 1).  

Since patterns of gene expression differed significantly among genotypes, we tested 

whether these differences were associated with thermal tolerance using three different models: 1) 

inclusion of all six genotypes separated into tolerant and susceptible groups; 2) inclusion of only 

the three genotypes that significantly differed in lifespan differential (M5, tolerant vs. U33 and 

M7, susceptible); and 3) the same tolerant and susceptible groups as in model 2 with the 

inclusion of the other three genotypes in an intermediate group. Neither tolerance, treatment, nor 

the interaction between tolerance and treatment had a significant effect on the differences in 

overall gene expression among samples for any of the three models tested (p > 0.10) (Table 1).  

Since there were no differences in the results among these three different scenarios, the 

first model was included along with the genotype, treatment, and genotype by treatment 

interaction model in the DESeq2 analysis for determining differentially expressed genes (DEGs) 

due to these different factors. When examining the effect of treatment, genotype, genotype by 

treatment interaction, and tolerance on DEGs among these six genotypes, treatment resulted in 

no significant DEGs, genotype had a significant effect on 64 DEGs, the genotype by treatment 

interaction had a significant effect on seven DEGs, and tolerance had a significant effect on four 

DEGs. The tolerance DEGs were selected to investigate the effect of differences in gene 

expression on long term thermal tolerance, while the genotype by treatment interaction DEGs 

were selected to investigate how genotypes differed in their response to thermal stress and 

whether there were consistent patterns that distinguished thermotolerant and susceptible 

genotypes.  
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When examining the four DEGs that differed significantly among corals with different 

thermal tolerances, these DEGs aligned with the following proteins in the NCBI database: 

peridinin-chlorophyll a-binding protein, cytochrome C, and an uncharacterized protein from 

Symbiodinium microadriaticum, and an uncharacterized protein from Acropora digitifera. For all 

four of these DEGs, gene counts were highly variable among genotypes and they were not 

consistent between tolerance groups (Figure 4). Neither the uncharacterized protein (Two-way 

ANOVA, F5,29 = 2.122, p = 0.091) nor peridinin-chlorophyll a-binding protein (Scheirer-Ray-

Hare, F5,29 = 0.939, p = 0.471) from S. microadriaticum significantly varied in their expression 

level among these six genotypes. While the expression of the uncharacterized protein from A. 

digitifera was significantly different among genotypes (Scheirer-Ray-Hare, F5,29 = 3.152, p = 

0.022), and the expression of cytochrome C was marginally significant among genotypes 

(Scheirer-Ray-Hare, F5,29 = 2.533, p = 0.051), only cytochrome C showed a significant difference 

between tolerance groups when genotypes were averaged together (Scheirer-Ray Hare, F1,33 = 

9.307, p = 0.004); this was mainly due to intolerant genotypes U1 and U33 having higher 

cytochrome C expression on average compared to all three tolerant genotypes (Figure 4a).  

When examining the seven significant genotype by treatment interaction DEGs, five of 

these genes aligned as follows: dimethylsulfonioproprionate (DMSP) lyase, 40s s6-like 

ribosomal protein, soma ferritin, a plectin like isoform, and an uncharacterized protein, all found 

in A. digitifera. For the last two significant DEGs, one had an ambiguous origin as it aligned with 

an uncharacterized protein found in multiple species, particularly in protists, plants, bacteria, and 

fungi, while the other did not align with any proteins, and there were no conserved domains 

found in this sequence.  
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For the 40s s6-like ribosomal protein (F5,24 = 4.286, p = 0.006), soma ferritin (F5,24 = 

5.552, p = 0.002), and the uncharacterized protein from A. digitifera (F5,24 = 3.539, p = 0.015), 

tolerant genotypes typically upregulated these genes in the heated treatment, while they tended to 

be downregulated in the susceptible genotypes (Figure 5a-c). This pattern, however, was not 

consistent across all tolerant and susceptible genotypes.  For example, tolerant genotype U58 did 

not change expression between treatments for the 40s s6-like ribosomal protein, and it 

downregulated expression of soma ferritin and the uncharacterized protein in the heated 

treatment (Figure 5a-c). Meanwhile, susceptible genotype U1 upregulated these same three genes 

in the heated treatment (Figure 5a-c). Although DMSP lyase (F5,24 = 2.825, p = 0.038), the 

plectin-like isoform (F5,24 = 4.747, p = 0.004), and the unaligned protein (F5,24 = 4.892, p = 

0.003) all showed significant genotype by treatment interactions on gene expression, there was 

no significant genotype by treatment interaction on expression of the uncharacterized protein of 

unknown origin (F5,24 = 2.553, p = 0.055) (Figure 5d-g). No apparent patterns between thermal 

tolerance and gene expression existed at any of these four loci (Figure 5d-g).  

Antibody recognition of proteins from A. cervicornis tissues was observed for ubiquitin-

conjugated and 4HNE-conjugated proteins, but not for Hsp70 (Figure 6); Hsp70 was therefore 

not included in the following analyses. When investigating the effect of treatment on protein 

expression differences among the three most thermal tolerant and the three least tolerant 

genotypes, elevated temperature was found to have no effect on either the activity of catalase 

(Schierer-Ray-Hare, F1,29 = 0.285, p = 0.598) or the relative absorbance of ubiquitin (Two-way 

ANOVA, F1,29 = 0.615, p = 0.439) or 4HNE (Two-way ANOVA, F1,29 = 0.281, p = 0.6) (Figure 

7). Genotype, on the other hand, was found to have a significant effect on the activity of catalase  

(Schierer-Ray-Hare, F5,29 = 10.6, p < 0.001) and the absorbance of 4HNE (Two-way ANOVA, 
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F5,29 = 35.569, p < 0.001), but not the absorbance of ubiquitin, which varied little among samples 

(Two-way ANOVA, F5,29 = 0.629, p = 0.679) (Figure 7).  

When examining the effect of tolerance on biomarker activity or relative concentration, 

tolerant genotypes tended to have higher catalase activity on average, although this difference 

was only significant for U58 according to a Tukey’s HSD post hoc test (p < 0.05 when compared 

to genotypes M7, U1, and U33) (Figure 7a). The absorbance of 4HNE tended to be lower in 

tolerant genotypes compared to susceptible genotypes, although this was not statistically 

significant between tolerance groups due to genotype U58, which had the highest 4HNE 

absorbance measured here (Figure 7c). Since the absorbance of ubiquitin did not differ among 

genotypes, there were no trends observed due to thermal tolerance (Figure 7b).  

To determine if there were significant correlations between protein biomarkers and 

thermal tolerance, lifespan differential for the three most thermal tolerant and the three least 

tolerant genotypes was compared to biomarker activity or relative concentration three different 

ways: 1) inclusion of only the biomarker and lifespan data for the heated fragments of each 

genotype; 2) the average of the biomarker data for the control fragments for each genotype; and 

3) the difference in average biomarker activity or relative concentration between the heated and 

control fragment for each genotype. The only significant correlation with lifespan differential for 

these genotypes was with catalase activity in the heated treatment (Table 2).  A Model I Linear 

Regression analysis was performed using catalase activity as the independent predictor variable 

and difference in lifespan as the dependent variable (Figure 7d). Using this model, catalase 

activity following a temperature stress explained 45.02% of the difference in lifespan among 

these genotypes (F1,10 = 8.197, p = 0.017) (Figure 7d).  
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When including all 20 genotypes in the analyses, treatment again had no significant effect 

on either the activity of catalase (Scheirer-Ray Hare, F1,79 = 0.385, p = 0.537) or the absorbance 

of ubiquitin (Scheirer-Ray-Hare, F1,79 = 0.013, p = 0.908) or 4HNE (Scheirer-Ray-Hare, F1,79 = 

0.349, p = 0.557). Significant differences among genotypes, on the other hand, were found for all 

three biomarkers (catalase activity: Scheirer-Ray-Hare, F19,79 = 8.279, p < 0.001; ubiquitin: 

Scheirer-Ray-Hare, F19,79 = 11.389, p < 0.001; 4HNE Scheirer-Ray-Hare, F19,79 = 13.163, p < 

0.001). The mean difference in lifespan for each genotype was also compared to the mean 

biomarker activity or concentration for the control samples, the heated samples, or the difference 

in activity or concentration between control and heated samples. However, these analyses also 

resulted in no significant correlations (Table 2) (Figure 8).  

 

DISCUSSION 

 Broad sense heritability was estimated at 0.528, meaning that 52.8% of the variation in 

thermal tolerance observed in this study can be attributed to differences in coral genotype, 

suggesting a high degree of genetic variation in thermal tolerance present in this nursery 

population. However, narrow sense heritability was estimated to be only 0.032, and it was not 

significantly different from bootstrapped values, suggesting that most of the genetic variation 

observed in thermal tolerance is due to non-additive sources such as dominance or epistatic 

effects. Since additive variation is the only portion of total genetic variation that can respond to 

natural selection (Lande and Shannon 1996), this population of A. cervicornis would appear to 

have a limited capacity to respond to projected increases in ocean temperatures. In addition, 

while there appeared to be a great deal of variation among genotypes in the gene expression 

patterns investigated here, there were very few consistent differences between tolerant and 
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susceptible genotypes. The few patterns that did arise, such as higher average catalase activity 

overall and upregulation of ferritin following temperature stress in tolerant genotypes, were not 

consistent across all tolerant or susceptible genotypes tested here. This suggests that the 

molecular basis of thermal tolerance is complex and that there are potentially many genotypic 

combinations that can result in a heat-tolerant genotype.  

 There have been few previous studies that estimate either broad sense or narrow sense 

heritability of thermal tolerance in corals, which limits the comparisons that can be made to our 

current study. Our estimate of broad sense heritability was similar to the broad sense heritability 

estimate of growth rate under thermal stress in Acropora millepora (H2 = 0.59) (Csaszar et al. 

2010). In their study, Csaszar et al. (2010) estimated the heritability for a number of traits during 

a thermal stress from the symbiont, the coral host, and the coral holobiont. They found higher 

genetic variation in symbiont-derived traits, such as photosystem efficiency (H2 = 0.50), and the 

holobiont-derived trait of growth rate, compared to host-derived traits, such as manganese 

superoxide dismutase production (H2 = 0.18), suggesting higher adaptive potential of the 

symbionts compared to the host in this coral species. On the other hand, our broad sense 

heritability estimate of thermal tolerance was much lower than the estimate for the heritability of 

thermal tolerance in A. millepora reported by Dixon et al. (2015), who estimated a broad sense 

heritability of 0.87. This suggests that different species will likely vary in their amount of genetic 

variation in thermal tolerance, specifically regarding survival following a thermal stress. It has 

been noted that the mode of reproduction in A. cervicornis along the Florida Reef Tract is largely 

asexual (Gilmore and Hall 1976), which may result in lower genetic diversity in thermal 

tolerance traits relative to other species. Conversely, our estimate of narrow sense heritability 
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was quite low compared to estimates of narrow sense heritability for morphological traits 

(Carlon et al. 2011) and settlement cues (Meyer et al. 2009) in A. millepora.  

The estimation of narrow sense heritability is highly dependent on the markers utilized 

and the amount of actual variation in relatedness of the samples utilized (Ritland 1996). The 

variation in relatedness was estimated at -0.144 ± 0.083 (mean ± SD) for the nursery population 

used in this study. According to Ritland (1996), zero or negative values for variance in 

relatedness are typically either due to sampling individuals that are all related to similar extents, 

or to utilizing too few markers or markers with few alleles. However, the 15 microsatellite loci 

used in this study as well as the number of alleles per locus (6.667 ± 0.803, mean ± SE) are well 

within the range recommended by Ritland (1996). This suggests that the negative actual variance 

in relatedness is more likely due to a similar degree of relatedness among the colonies sampled. 

Ritland (1996) recommends that the number of pairwise comparisons should be as large as 

possible (104 or 105 if feasible), and in our study there were only 780 pairwise comparisons 

between fragments due to sampling constraints. Therefore, the estimate of narrow sense 

heritability reported here should be interpreted with caution, and further studies will be needed 

utilizing a wider range of A. cervicornis colonies with a higher variance in actual relatedness to 

more accurately estimate narrow sense heritability.  

 While the estimate for narrow-sense heritability in this study is quite low, this does not 

necessarily mean that the populations utilized here will have no capacity to adapt to climate 

change. Thermal tolerance is a complex quantitative trait, which is likely to be due to epistatic 

interactions among multiple loci (Hoegh-Guldberg 2014). In certain models, it’s been shown that 

epistatic variance can become additive (Cheverud and Routman 1995), and that high epistatic 

variance can increase additive genetic variance in populations following a population bottleneck 
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(Cheverud and Routman 1996). This suggests that if a population has substantial epistatic genetic 

variance, it can lead to a rescue of low additive genetic variance, even following drastic 

population declines, providing the necessary genetic variation for natural selection to act on. The 

relatively high broad sense heritability estimate compared to the narrow sense heritability 

estimate in this study suggests that variation in thermal tolerance may be due more to dominance 

effects and epistatic interactions instead of additive genetic variance. If the variance in this trait 

is largely due to epistatic interactions, then this could provide the necessary source of genetic 

variation for this population to be able to adapt to elevated ocean temperatures with climate 

change over successive generations.  

 There are several hypotheses that can explain the differences between thermal tolerant 

and susceptible colonies. One hypothesis is the frontloading hypothesis, proposed by Barshis et 

al. 2013, which found that colonies living in warmer conditions constitutively upregulated sets of 

genes that were otherwise induced only during heat stress, which may better prepare them to 

circumvent or respond to such stress. Another hypothesis, transcriptome resilience, was proposed 

by Seneca and Palumbi (2015), under which corals show a wide transcriptome response before 

bleaching begins, followed by a more rapid return to normal gene expression in more bleaching-

resistant colonies. On the other hand, Kenkel and Matz (2016) provide evidence for enhanced 

phenotypic plasticity leading to higher thermal tolerance rather than the frontloading of stress 

response genes among populations, noting that which strategy is employed may be due to the 

frequency at which coral populations are exposed to thermal stress events. Constitutive 

upregulation would be favored over plasticity if the environment fluctuates more rapidly than the 

typical response time, which would be analogous to a constant stress environment (Kenkel and 

Matz 2016). While our study only examined mRNA and protein expression at a single time 
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point, making it difficult to determine which strategy is being employed in this A. cervicornis 

nursery population, there are a few patterns that are evident, although these patterns were not 

consistent across all tolerant or all susceptible genotypes.  

First of all, there did appear to be constitutive differences between the three most tolerant 

and the three most susceptible genotypes in terms of catalase activity and the tolerance DEG 

cytochrome C. Higher catalase activity, regardless of treatment, was associated with longer life 

spans during a long term thermal stress, which supports the frontloading hypothesis. However, 

this difference was not consistent across all tolerant genotypes: catalase activity was significantly 

higher in tolerant genotypes M3 and U58 compared to intolerant genotypes U1 and U33, but 

there was no significant difference in catalase activity between tolerant genotypes M3 and M5 

and intolerant genotype M7. On the other hand, lower cytochrome C expression was associated 

with longer life spans during a long term thermal stress. Higher upregulation of cytochrome C 

may be indicative of these colonies experiencing higher stress than their more thermal tolerant 

counterparts. Higher upregulation of this gene could also lead to higher energetic costs, which 

may in turn reduce the ability of these colonies to handle a long term thermal stress. However, 

there was still a great deal of variation in cytochrome C expression among colonies that was not 

consistent across all tolerant and intolerant colonies: intolerant genotypes M7 and U33 had 

higher expression on average than intolerant genotype M7, which could be driving the 

differences observed between tolerant and intolerant genotypes.  

Other studies have investigated the roles of catalase and cytochrome C in coral thermal 

stress responses, and have typically found these molecules to be upregulated in samples 

following a thermal stress (Rodriguez-Lanetty et al. 2009; Polato et al. 2013; Ross et al. 2013; 

Rosic et al. 2014). However, our results differ in that a short term thermal stress over 12 hours 
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did not significantly change expression from control samples maintained at ambient temperature; 

we only observed differences between tolerant and susceptible colonies. This could be due to a 

number of factors, including differences in sampling time points, differences in the severity of 

heat stress, or differences between the species examined. Other studies have confirmed 

variability in the expression of certain biomarkers, including catalase, between different 

genotypes (Granados-Cifuentes et al. 2013; Polato et al. 2013). However, this appears to be the 

first study to attempt to link variability in the activity of these biomarkers after a short term 

thermal stress to survival under a long term thermal stress.  

What is interesting to note is that, while some transcripts obtained aligned to an A. 

cervicornis transcriptome (Libro et al. 2013), other significant DEGs were of Symbiodinium 

origin. Furthermore, the three tolerance DEGs of Symbiodinium origin showed high similarities 

in expression among all six coral genotypes, compared to the one uncharacterized DEG of 

Acropora origin. As has been investigated in other studies, the composition and genotype of 

Symbiodinium are likely to play a major role in overall coral holobiont thermal tolerance (Fisher 

et al. 2012). Furthermore, different combinations of host and symbiont genotypes are likely to 

have different responses to thermal stress (Abrego et al. 2008). Along the Florida Reef tract, 

Baums et al. (2010) found that A. cervicornis typically harbors clade A Symbiodinium except 

along inshore environments, in which case it harbors mostly clades C and D Symbiodinium 

instead. Since all 20 genotypes were obtained from the same coral nursery and were therefore 

raised in the same environment, they are likely to harbor a simliar composition of Symbiodinium 

at the clade level. However, Symbiodinium still vary greatly at finer scales than the cladal level 

(Rodriguez-Lanetty et al. 2004), which could further influence coral holobiont thermal tolerance, 

and these finer scale genotypic differences will need to be investigated in more detail.  
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Our results also showed that upregulation of three specific DEGs after a thermal stress 

compared to controls of the same genotype tended to be associated with increased thermal 

tolerance, whereas downregulation of these same DEGs following thermal stress tended to be 

associated with increased susceptibility. These DEGs were a 40s s6-like ribosomal protein, soma 

ferritin, and an uncharacterized protein from A. digitifera. However, these differences were not 

consistent across all tolerant and susceptible genotypes: while this pattern was clearly displayed 

between tolerant genotypes M3 and M5 compared to intolerant genotype U33, tolerant genotype 

U58 often showed the opposite pattern. This makes it difficult to determine if this is a consistent 

pattern between tolerant and susceptible coral colonies, or if this is just a pattern among these 

three genotypes in general.  

Ferritin and ribosomal protein processing genes have shown upregulation in other coral 

species following a thermal stress (Csaszar et al. 2009; Seneca et al. 2010; Polato et al. 2013; 

Rosic et al. 2014; Rose et al. 2015). Csaszar et al. (2009) showed that while ferritin tended to be 

upregulated in response to thermal stress, the degree of upregulation was highly variable, and 

downregulation did occur in two coral colonies. Here, we show that upregulation shortly after a 

thermal stress is not only variable among genotypes, but also associated with longer lifespans 

during a long term thermal stress. In regards to ribosomal protein processing, some studies have 

shown ribosomal proteins being downregulated in corals following heat stress (DeSalvo et al. 

2010; Bellantuono et al. 2012; Bay and Palumbi 2015), while other studies have shown the 

opposite (Rosic et al. 2014; Rose et al. 2015). Our results here agree with Rosic et al. (2014), 

which found ribosomal proteins to be upregulated following thermal stress, and our results also 

show a high degree of variation in expression among different genotypes, which could influence 

the differences observed among studies. 
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Overall, our gene expression and biomarker concentration results show that there is a 

high variability in expression among coral genotypes, and this variability is not consistent across 

tolerance groups. One thing to note is that, while the three most thermal tolerant genotypes had, 

on average, longer lifespans compared to the other genotypes used in this study, these differences 

were only significant for tolerant genotype M5. The same is true for the three most susceptible 

genotypes: while these three genotypes had shorter lifespans on average compared to the other 

genotypes used in this study, these differences were only significant for intolerant genotypes M7 

and U33. The inclusion of genotypes that did not differ significantly in lifespan may have 

introduced more variability in our gene and protein expression data, making it difficult to discern 

significant differences between tolerance groups. Therefore, the data presented here may not 

technically represent opposite ends of the thermal tolerance spectrum in this species.  

While Hsp70 has been extensively studied for its role in thermal stress response and has 

been shown to be upregulated in response to thermal stress in other coral species and 

Symbiodinium (Barshis et al. 2010, 2013; Leggat et al. 2011; Rosic et al. 2011; Polato et al. 

2013), our results show a lack of Hsp70 expression at the protein level in both control and heated 

samples at the 12 hour sampling time point. No Hsp70 transcripts were identified in the 36 

samples utilized for transcriptome analysis either (data not shown), which supports our protein 

expression data. This is supported by other studies which have noted a sharp decline in Hsp70 in 

coral samples subjected to thermal stress over time (Hayes and King 1995; Rodriguez-Lanetty et 

al. 2009). Hayes and King (1995) noted that Hsp70 expression dropped in Montastrea annularis 

between 12 and 24 hours of elevated temperature exposure. Rodriguez-Lanetty et al. (2009) also 

found that Hsp70 expression decreased in coral larvae of the species A. millepora as soon as 3 

hours post thermal stress. This suggests that 12 hours post thermal stress may be too late of a 
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sampling time point to observe Hsp70 expression in this species, and further research utilizing 

multiple sampling time points will be needed in the future. 

In summary, while there is a high amount of genetic variation present in thermal 

tolerance in the nursery population of A. cervicornis sampled here, further research is needed to 

accurately determine the amount of additive genetic variation present in these genotypes and 

therefore their adaptive potential. Furthermore, while the gene expression results reported here 

represent a snapshot of the thermal stress response of A. cervicornis under a short term sub-lethal 

stress, it does bring to light general trends of certain known stress biomarkers with thermal 

tolerance. The gene expression results also highlight the fact that different sets of genes respond 

differently to thermal stress, with some being constitutively upregulated or downregulated in 

tolerant samples, and others being upregulated or downregulated in response to temperature, with 

the direction differing between tolerant and susceptible samples. Therefore, no one hypothesis 

for gene expression patterns will likely be suitable for explaining the patterns observed in this 

species, and further research at multiple time points will be necessary to understand how this 

species responds at the onset of thermal stress, compared to what we observed after 12 hours, 

and compared to the onset of temperature-induced bleaching.  
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Figure 1. Average maximum quantum yield for all A. cervicornis fragments maintained in the 
heated treatment (32 ± 1 °C) over the course of the experiment. The last fragments were removed 
at 612 hours. Error bars show standard error.   
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Figure 2. Average difference in lifespan among fragments exposed to elevated temperatures (32 
± 1 °C) and fragments exposed to control temperatures (28 ± 1 °C) over 26 days for 20 Acropora 
cervicornis genotypes. All control fragments survived the duration of the experiment. 
Significantly different genotypes are indicated by different letters as determined by a Tukey’s 
HSD post hoc test. Error bars show standard error. 
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Figure 3. Principal coordinate analysis (PCoA) on the matrix of pairwise Manhattan distances 
among the 36 samples showing clustering by (a) treatment (control vs heated) and (b) thermal 
tolerance (tolerant vs susceptible). Results are plotted against principal coordinates 1 and 2. 
Colored points indicate different genotypes.  
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Table 1. ANOVA tables on the pairwise Manhattan distance matrices. (a) The first ANOVA 
investigated the effect of genotype, treatment, and their interaction on overall differences in gene 
expression among samples. The effect of tolerance, treatment and their interaction was 
investigated in the following three ways: (a) all samples were included and designated as either 
tolerant or susceptible; (b) samples that significantly differed in  thermal tolerance were 
designated as tolerant (M5) or susceptible (M7, U33), and all other genotypes were  designated 
as intermediate (M3, U1, and U58); and (c) only the three genotypes that were statistically 
significantly different in terms of their differences in lifespan were included (M5, M7, and U33)  
 

   

df SS MS F R2 p

Genotype 5 107060 21412.0 2.2310 0.2522 0.001
Treatment 1 12521 12521.0 1.0377 0.0295 0.182
Genotype × Treatment 5 74592 14918.4 1.5544 0.1757 0.010
Residuals 24 230342 9597.6 0.5426
Total 35 424515 1.0000

Tolerance 1 16643 16643.3 1.3794 0.0392 0.142
Treatment 1 12521 12521.0 1.0377 0.0295 0.364
Tolerance × Treatment 1 9241 9240.7 0.7659 0.0218 0.694
Residuals 32 386110 12065.9 0.9095
Total 35 424515 1.0000

Tolerance 2 27182 13591.0 1.1333 0.0640 0.256
Treatment 1 12521 12521.0 1.0441 0.0295 0.330
Tolerance × Treatment 2 25032 12516.0 1.0436 0.0590 0.362
Residuals 30 359780 11993.0 0.8475
Total 35 424515 1.0000

Tolerance 1 15989 15989.0 1.2915 0.0753 0.177
Treatment 1 6427 6426.7 0.5191 0.0303 0.974
Tolerance × Treatment 1 16504 16503.9 1.3331 0.0778 0.183
Residuals 14 173321 12380.1 0.8166
Total 17 212240 1.0000

(b) Model: Tolerance + Treatment + Tolerance × Treatment

(a) Model: Genotype + Treatment + Genotype × Treatment

(d) Model: Tolerance + Treatment + Tolerance × Treatment

(c) Model: Tolerance + Treatment + Tolerance × Treatment

41 



 
 
Figure 4. Differences in average gene count for four DEGs identified based on thermal tolerance: 
(a) an uncharacterized protein from S. microadriaticum, (b) peridinin-chlorophyll a-binding 
protein from S. microadriaticum, (c) cytochrome C from S. microadriaticum, and (d) an 
uncharacterized protein from A. digitifera. Different letters indicate significant differences 
according to a Tukey’s HSD post hoc test. Error bars show standard error.  
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Figure 5. Differences in average gene count for the seven DEGs that were identified as 
significant due to genotype by treatment interactions: (a) 40s ribosomal protein s6-like, (b) soma 
ferritin, (c) an uncharacterized protein, (d) DMSP lyase, and (e) a plectin like isoform, all from 
A. digitifera, as well as (f) an uncharacterized protein with ambiguous origin, and (g) 
isogroup33177, which could not be aligned. Different letters indicate significant differences as 
determined by a Tukey’s HSD post hoc test. Error bars show standard error.  43 



 
Figure 6. Western blots used for validation of (a) 4-hydroxynonenal-conjugate (4HNE), (b) Hsp 
70, and (c) ubiquitin-conjugate antibody specificity against tissue solutions from select control 
and heated treatment samples of Acropora cervicornis. Molecular weights (kDa) are based on the 
Kaleidoscope standard in lane L. Positive control lanes (+) consisted of 10 µg of Heat Shocked 
HeLa Cell Lysate for Hsp 70 and 4HNE-conjugates, and Rat Brain Tissue Extract for ubiquitin-
conjugates.  
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Figure 7. Differences in average (a) catalase activity, (b) ubiquitin absorbance, and (c) 4HNE 
absorbance between treatments and among coral genotypes for the three most thermal tolerant 
and three most susceptible genotypes. Different letters indicate significant differences based on 
Tukey’s HSD post hoc test. Error bars show standard error. (d) Model I linear regression 
showing the relationship of difference in lifespan of the three most tolerant and the three least 
tolerant genotypes to catalase activity in the heated treatment.  
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Table 2. Results from correlation analyses between difference in lifespan and biomarker activity 
or concentration for the following three biomarkers: catalase, ubiquitin, and 4HNE. Each 
individual fragment was included in correlations for heated fragments only, while the average of 
biomarker activity or concentration was taken for correlations involving only the control 
fragments or the biomarker differential. Significant differences are indicated by the bold text and 
asterisk.  
† Pearson correlation 
‡ Spearman’s Rho  
 

   

N Coefficient p

heated treatment x lifespan differential† 12 -0.671 0.017*
control treatment x lifespan differential‡ 6 -0.353 0.492
biomarker differential x lifespan differential‡ 6 0.265 0.612

heated treatment x lifespan differential† 12 -0.072 0.823
control treatment x lifespan differential‡ 6 -0.313 0.545
biomarker differential x lifespan differential‡ 6 -0.265 0.612

heated treatment x lifespan differential† 12 0.131 0.684
control treatment x lifespan differential‡ 6 0.265 0.621
biomarker differential x lifespan differential‡ 6 0.706 0.117

heated treatment x lifespan differential‡ 40 -0.184 0.255
control treatment x lifespan differential† 20 -0.186 0.434
biomarker differential x lifespan differential‡ 20 -0.073 0.759

heated treatment x lifespan differential‡ 40 -0.072 0.660
control treatment x lifespan differential‡ 20 -0.111 0.640
biomarker differential x lifespan differential‡ 20 0.270 0.250

heated treatment x lifespan differential† 40 -0.199 0.218
control treatment x lifespan differential‡ 20 -0.256 0.275
biomarker differential x lifespan differential‡ 20 0.231 0.328

4HNE: all 20 genotypes

Catalase: 3 most tolerant and 3 least tolerant genotypes

Ubiquitin: 3 most tolerant and 3 least tolerant genotypes

Catalase: all 20 genotypes

4HNE: 3 most tolerant and 3 least tolerant genotypes

Ubiquitin: all 20 genotypes

46 



 

 
 
Figure 8. Correlation analyses showing the association of difference in lifespan of all 20 
genotypes with difference in relative concentration or activity between heated fragments and 
control fragments for the following three stress biomarkers: (a) catalase, (b) ubiquitin, and (c) 
4HNE.  
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