17 research outputs found

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.National Science Foundation Grant PHY 89-19381U.S. Navy - Office of Naval Research Contract N00014-90-J-1322Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Army Research Office Contract DAAL03-89-K-0082U.S. Navy - Office of Naval Research Grant N00014-89-J-1207U.S. Navy - Office of Naval Research Grant N00014-90-J-1642National Science Foundation Grant PHY 86-05893National Science Foundation Grant PHY 89-2176

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.National Science Foundation Grant PHY 89-19381National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant PHY 89-21769U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Navy - Office of Naval Research Grant N00014-89-J-1207U.S. Navy - Office of Naval Research Grant N00014-90-J-164

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationU.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768Charles S. Draper Laboratory Contract DL-H-4847759U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationNational Science Foundation Grant PHY 95-01984U.S. Army Research Office Contract DAAL01-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080

    Progress toward cold antihydrogen

    No full text
    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP Collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature. (29 refs)

    Cold Antihydrogen and CPT

    No full text
    Progress in the quest for cold antihydrogen includes the first substantial accumulation of cold positrons and the first demonstration of positron cooling. Stacking of cold antiprotons is key to using the new antiproton decelerator facility at CERN. (22 refs)

    Cold Antimatter Plasmas and Aspirations for Cold Antihydrogen

    No full text
    Only our ATRAP Collaboration is yet able to accumulate and store 4.2 K antiprotons and positrons. The antiprotons come initially from the new Antiproton Decelerator facility at CERN. Good control of such cold antimatter plasmas is key to aspirations to produce and study antihydrogen atoms that are cold enough to confine by their magnetic moments. In the closest approach to cold antihydrogen realized to date, the cold positrons have been used to cool antiprotons, the first time that positron cooling has ever been observed. The Penning- Ioffe trap, one possibility for simultaneously confining antihydrogen and the cold ingredients from which it is formed, is introduced and discussed. (27 refs)

    First positron cooling of antiprotons

    No full text
    Abstract Positrons are used to cool antiprotons for the first time. The oppositely charged positrons and antiprotons are first simultaneously accumulated in separate Penning trap volumes, and then are spatially merged in a nested Penning trap. The antiprotons cool until they reach a low relative velocity with respect to the cold positrons, the situation expected to be optimal for the production of cold antihydrogen
    corecore