36 research outputs found

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Mechanical Behaviors of Microwave-Assisted Pyrolysis Recycled Carbon Fiber-Reinforced Concrete with Early-Strength Cement

    No full text
    This study aimed to investigate the mechanical performance of early-strength carbon fiber-reinforced concrete (ECFRC) by incorporating original carbon fiber (OCF), recycled carbon fiber (RCF), and sizing-removed carbon fiber (SCF). Compressive, flexural, and splitting tensile strength were tested under three fiber-to-cement weight ratios (5‰, 10‰, and 15‰). The RCF was produced from waste bicycle parts made of carbon fiber-reinforced polymer (CFRP) through microwave-assisted pyrolysis (MAP). The sizing-removed fiber was obtained through a heat-treatment method applied to the OCF. The results of scanning electron microscopy (SEM) analysis with energy dispersive X-ray spectrometry (EDS) indicated the successful removal of sizing and impurities from the surface of the RCF and SCF. The mechanical test results showed that ECFRC with a 10‰ fiber-to-cement weight ratio of carbon fiber had the greatest improvement in its mechanical strengths. Moreover, the ECFRC with 10‰ RCF exhibited higher compressive, flexural, and splitting tensile strength than that of benchmark specimen by 14.2%, 56.5%, and 22.5%, respectively. The ECFRC specimens with a 10‰ fiber-to-cement weight ratio were used to analyze their impact resistance under various impact energies in the impact test. At 50 joules of impact energy, the impact number of the ECFRC with SCF was over 23 times that of the benchmark specimen (early-strength concrete without fiber) and was also greater than that of ECFRC with OCF and RCF

    The Push-Over Test and Numerical Analysis Study on the Mechanical Behavior of the GFRP Frame for Sustainable Prefabricated Houses

    No full text
    The glass fiber reinforced plastics (GFRP) composite material is a low carbon emission, low life cycle cost, and sustainable material. In this paper, the structural behavior of the lateral force resistant performance of GFRP composite material frames with steel joints was presented, and the energy dissipation and failure modes of the GFRP frames were discussed. A total of six GFRP frames, including single-span and double-span frames with and without diagonal bracing members, were tested by pushover tests to obtain the lateral load-displacement relationships of the GFRP frames. The force-displacement relationship and the energy dissipation of the GFRP frames were examined in the pushover test. In addition, the numerical analysis was performed to obtain the lateral load-displacement relationships of the GFRP frames under pushover tests. When the numerical analysis results and the experimental results were compared, the absolute average errors of the maximum loads were less than 4%, and the lateral load-displacement relationships were close to each other. The numerical analysis results can predict the experimental force-displacement relationships of the GFRP frames

    Case study of GFRP as a sheet-pile wall for stream bank protection in Taiwan

    No full text
    The successful design of a structure requires not only the proper analysis of the structure but also the careful consideration of the environment that the structure is situated in. For many waterfront structures such as those near harbors, lakes, streams, and creeks, water is especially an engineering problem. To alleviate this problem, a sheet-pile wall made of glass fiber reinforced plastics (GFRP) was introduced in a pioneering stream bank stabilization (revetment) project at the Nan-Zi-Gou creek in the Shihmen Reservoir watershed of Taiwan. This paper presents the project as a case study and describes the material experiments and the finite-element analysis of revetment stability. The final construction of the GFRP sheet-pile wall was completed successfully. It is said that this pioneering work brought many positive features of GFRP to construction and could serve as a model for future replication

    The Design and Analysis of Internally Stiffened GFRP Tubular Decks—A Sustainable Solution

    No full text
    The aim of this paper was to find an optimal stiffener configuration of thin-wall tubular panels made by glass fiber reinforced polymer (GFRP) composite material, which is a low carbon emission, low life cycle cost, and sustainable material. Finite-element analysis (FEA) was used to investigate the flexural and torsional stiffness of various internally stiffened sections of thin-wall GFRP decks. These decks consist of internally stiffened tubular profiles laid side by side and bonded together with epoxy to ensure the panel acts as an assembly. Three-dimensional models of the seven proposed decks were assembled with tubular profiles of different stiffener patterns. First, the non-stiffened tube profile was tested experimentally to validate the parameters used in the subsequent numerical analysis. Then, the finite element software, ANSYS, was used to simulate the flexural and torsional behavior of the decks with different stiffener patterns under bending and torsional loads. The decks with stiffener patterns such as “O„ type, “V„ type, and “D„ type were found to be the most effective in bending. For torsion, there was a distinct tendency for deck panels with closed shaped stiffener patterns to perform better than their counterparts. Overall, the “O„ type deck panel was an optimal stiffener configuration

    The Sustainable Composite Materials in Civil and Architectural Engineering

    No full text
    Sustainability is a central value in the United Nations’ 17 sustainable development goals (SDGs), which include no poverty, zero hunger, good health and well-being, quality education, gender equality, clean water and sanitation, affordable and clean energy, decent work and economic growth, industry innovation and infrastructure, reduced inequalities, sustainable cities and communities, responsible consumption and production, climate action, life below water, and life on land [...

    The Sustainable Composite Materials in Civil and Architectural Engineering

    No full text
    Sustainability is a central value in the United Nations’ 17 sustainable development goals (SDGs), which include no poverty, zero hunger, good health and well-being, quality education, gender equality, clean water and sanitation, affordable and clean energy, decent work and economic growth, industry innovation and infrastructure, reduced inequalities, sustainable cities and communities, responsible consumption and production, climate action, life below water, and life on land [...

    A Study on Improving the Mechanical Behaviors of the Pultruded GFRP Composite Material Members

    No full text
    This study focuses on improving the mechanical behaviors of pultruded glass fiber-reinforced polymers (GFRP) composite material. A combined GFRP member was prepared by the insertion of a second GFRP tube inside the prototype GFRP member and then filling the compartment with epoxy resin mortar to combine both members. Analysis of the combined member was performed to consider improvement of the stiffness and strength of the material to meet design requirements. Four different types of GFRP deck specimens and five different types of GFRP beam specimens were investigated by performing the three-point bending test to obtain their ultimate strength, ultimate displacement, stiffness, and corresponding failure modes. Observations from the experiment showed that infilling the rectangular GFRP tube member can effectively increase the GFRP specimen’s stiffness and ultimate strength. Finally, the Euler beam and Timoshenko beam theories combined with the transformed section method were used to obtain the stiffness of the combined GFRP members, and then compare those stiffness with the experimental results
    corecore