2 research outputs found

    A Deep Learning–Based Approach for Prediction of Vancomycin Treatment Monitoring: Retrospective Study Among Patients With Critical Illness

    No full text
    BackgroundVancomycin pharmacokinetics are highly variable in patients with critical illnesses, and clinicians commonly use population pharmacokinetic (PPK) models based on a Bayesian approach to dose. However, these models are population-dependent, may only sometimes meet the needs of individual patients, and are only used by experienced clinicians as a reference for making treatment decisions. To assist real-world clinicians, we developed a deep learning–based decision-making system that predicts vancomycin therapeutic drug monitoring (TDM) levels in patients in intensive care unit. ObjectiveThis study aimed to establish joint multilayer perceptron (JointMLP), a new deep-learning model for predicting vancomycin TDM levels, and compare its performance with the PPK models, extreme gradient boosting (XGBoost), and TabNet. MethodsWe used a 977-case data set split into training and testing groups in a 9:1 ratio. We performed external validation of the model using 1429 cases from Kangwon National University Hospital and 2394 cases from the Medical Information Mart for Intensive Care–IV (MIMIC-IV). In addition, we performed 10-fold cross-validation on the internal training data set and calculated the 95% CIs using the metric. Finally, we evaluated the generalization ability of the JointMLP model using the MIMIC-IV data set. ResultsOur JointMLP model outperformed other models in predicting vancomycin TDM levels in internal and external data sets. Compared to PPK, the JointMLP model improved predictive power by up to 31% (mean absolute error [MAE] 6.68 vs 5.11) on the internal data set and 81% (MAE 11.87 vs 6.56) on the external data set. In addition, the JointMLP model significantly outperforms XGBoost and TabNet, with a 13% (MAE 5.75 vs 5.11) and 14% (MAE 5.85 vs 5.11) improvement in predictive accuracy on the inner data set, respectively. On both the internal and external data sets, our JointMLP model performed well compared to XGBoost and TabNet, achieving prediction accuracy improvements of 34% and 14%, respectively. Additionally, our JointMLP model showed higher robustness to outlier data than the other models, as evidenced by its higher root mean squared error performance across all data sets. The mean errors and variances of the JointMLP model were close to zero and smaller than those of the PPK model in internal and external data sets. ConclusionsOur JointMLP approach can help optimize treatment outcomes in patients with critical illnesses in an intensive care unit setting, reducing side effects associated with suboptimal vancomycin administration. These include increased risk of bacterial resistance, extended hospital stays, and increased health care costs. In addition, the superior performance of our model compared to existing models highlights its potential to help real-world clinicians

    All-optical control of high-purity trions in nanoscale waveguide

    No full text
    © 2023 Springer Nature Limited. The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion. © 2023. The Author(s).11Nsciescopu
    corecore