1,633 research outputs found
X-ray induced persistent photoconductivity in Si-doped AlGaAs
We demonstrate that X-ray irradiation can be used to induce an
insulator-metal transition in Si-doped AlGaAs, a
semiconductor with {\it DX} centers. The excitation mechanism of the {\it DX}
centers into their shallow donor state was revealed by studying the
photoconductance along with fluorescence. The photoconductance as a function of
incident X-ray energy exhibits an edge both at the Ga and As K-edge, implying
that core-hole excitation of Ga and As are efficient primary steps for the
excitation of {\it DX} centers. A high quantum yield () suggests that
the excitation is indirect and nonlocal, due to secondary electrons, holes, and
fluorescence photons.Comment: 3 pages of text, 6 figures. An error in Fig.5 was detected, so we
corrected i
Time dependent CP asymmetry in decay to probe the origin of CP violation
Since the CP violation in the system has been investigated up to now only
through processes related to the -- mixing, urgently required is
new way of study for the CP violation and establishing its origin in the
system independent of the mixing process. In this work, we explore the
exclusive decay to obtain the time-dependent CP
asymmetry in decay process in the standard model and the
supersymmetric model. We find that the complex RL and RR mass insertion to the
squark sector in the MSSM can lead to a large CP asymmetry in
decay through the gluino-squark diagrams, which is not predicted in the
Standard Model induced by the -- mixing.Comment: 10 pages, 4 eps figure
Optimal Quantum State Estimation with Use of the No-Signaling Principle
A simple derivation of the optimal state estimation of a quantum bit was
obtained by using the no-signaling principle. In particular, the no-signaling
principle determines a unique form of the guessing probability independently of
figures of merit, such as the fidelity or information gain. This proves that
the optimal estimation for a quantum bit can be achieved by the same
measurement for almost all figures of merit.Comment: 3 pages, 1 figur
Semi-device-independent bounds on entanglement
Detection and quantification of entanglement in quantum resources are two key
steps in the implementation of various quantum-information processing tasks.
Here, we show that Bell-type inequalities are not only useful in verifying the
presence of entanglement but can also be used to bound the entanglement of the
underlying physical system. Our main tool consists of a family of
Clauser-Horne-like Bell inequalities that cannot be violated maximally by any
finite-dimensional maximally entangled state. Using these inequalities, we
demonstrate the explicit construction of both lower and upper bounds on the
concurrence for two-qubit states. The fact that these bounds arise from
Bell-type inequalities also allows them to be obtained in a
semi-device-independent manner, that is, with assumption of the dimension of
the Hilbert space but without resorting to any knowledge of the actual
measurements being performed on the individual subsystems.Comment: 8 pages, 2 figures (published version). Note 1: Title changed to
distinguish our approach from the standard device-independent scenario where
no assumption on the Hilbert space dimension is made. Note 2: This paper
contains explicit examples of more nonlocality with less entanglement in the
simplest CH-like scenario (see also arXiv:1011.5206 by Vidick and Wehner for
related results
Stochastic reconstruction of sandstones
A simulated annealing algorithm is employed to generate a stochastic model
for a Berea and a Fontainebleau sandstone with prescribed two-point probability
function, lineal path function, and ``pore size'' distribution function,
respectively. We find that the temperature decrease of the annealing has to be
rather quick to yield isotropic and percolating configurations. A comparison of
simple morphological quantities indicates good agreement between the
reconstructions and the original sandstones. Also, the mean survival time of a
random walker in the pore space is reproduced with good accuracy. However, a
more detailed investigation by means of local porosity theory shows that there
may be significant differences of the geometrical connectivity between the
reconstructed and the experimental samples.Comment: 12 pages, 5 figure
Bell inequalities for three systems and arbitrarily many measurement outcomes
We present a family of Bell inequalities for three parties and arbitrarily
many outcomes, which can be seen as a natural generalization of the Mermin Bell
inequality. For a small number of outcomes, we verify that our inequalities
define facets of the polytope of local correlations. We investigate the quantum
violations of these inequalities, in particular with respect to the Hilbert
space dimension. We provide strong evidence that the maximal quantum violation
can only be reached using systems with local Hilbert space dimension exceeding
the number of measurement outcomes. This suggests that our inequalities can be
used as multipartite dimension witnesses.Comment: v1 6 pages, 4 tables; v2 Published version with minor typos correcte
New Physics Effects in Decays
We present a model-independent analysis of rare B decays, . The effect of possible new physics is written in terms of dimension-6
four-fermi interactions. The lepton number violating scalar- and tensor-type
interactions are included, and they induce decays. We show systematically how the branching ratios and
missing mass-squared spectrum depend on the coefficients of the four-fermi
interactions.Comment: 20 pages with 7 figure
- …