1,165 research outputs found

    The causal structure of dynamical charged black holes

    Full text link
    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot saymore about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.Comment: 23 pages, 23 figure

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Three-dimensional structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae

    Get PDF
    Mosquitoes act as a vector for the transmission of disease. The World Health Organization has recommended strict control of mosquito larvae because of their few, fixed, and findable features. The respiratory system of mosquito larvae and pupae in the water has a weak point. As aquatic organisms, mosquito larvae and pupae inhale atmosphere oxygen. However, the mosquito pupae have a non-feeding stage, unlike the larvae. Therefore, detailed study on the tracheal system of mosquito pupae is helpful for understanding their survival strategy. In this study, the three-dimensional (3D) structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae were comparatively investigated using synchrotron X-ray microscopic computed tomography. The respiratory frequencies of the dorsal trunks were also investigated. Interestingly, the pupae of the two mosquito species possess special tracheal systems of which the morphological and functional features are distinctively different. The respiratory frequency of Ae. togoi is higher than that of An. sinensis. These differences in the breathing phenomena and 3D structures of the respiratory systems of these two mosquito species provide an insight into the tracheal systems of mosquito pupae. ? 2017 The Author(s).111Ysciescopu

    Dynamics of false vacuum bubbles in Brans-Dicke theory

    Full text link
    We study the dynamics of false vacuum bubbles in the Brans-Dicke theory of gravity by using the thin shell or thin wall approximation. We consider a false vacuum bubble that has a different value for the Brans-Dicke field between the inside false vacuum region and the outside true vacuum region. Within a certain limit of field values, the difference of field values makes the effective tension of the shell negative. This allows new expanding false vacuum bubbles to be seen by the outside observer, which are disallowed in Einstein gravity.Comment: 29 pages, 20 figure

    MRBench: A Benchmark for MapReduce Framework

    Full text link
    MapReduce is Google’s programming model for easy development of scalable parallel applications which pro-cess huge quantity of data on many clusters. Due to its conveniency and efficiency, MapReduce is used in various applications (e.g., web search services and on-line analytical processing.) However, there are only few good benchmarks to evaluate MapReduce implementa-tions by realistic testsets. In this paper, we present MRBench that is a bench-mark for evaluating MapReduce systems. MRBench fo-cuses on processing business oriented queries and con-current data modifications. To this end, we build MR-Bench to deal with large volumes of relational data and execute highly complex queries. By MRBench, users can evaluate the performance of MapReduce systems while varying environmental parameters such as data size and the number of (Map/Reduce) tasks. Our ex-tensive experimental results show that MRBench is a useful tool to benchmark the capability of answering critical business questions.

    Valley spin polarization by using the extraordinary Rashba effect on silicon

    Get PDF
    The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C-3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.X114334Nsciescopu

    The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions

    Full text link
    We explicitly prove the horizon-entropy increase law for both causal and quasi-locally defined horizons in scalar-tensor and f(R)f(R) gravity theories. Contrary to causal event horizons, future outer trapping horizons are not conformally invariant and we provide a modification of trapping horizons to complete the proof, using the idea of generalised entropy. This modification means they are no longer foliated by marginally outer trapped surfaces but fixes the location of the horizon under a conformal transformation. We also discuss the behaviour of horizons in "veiled" general relativity and show, using this new definition, how to locate cosmological horizons in flat Minkowski space with varying units, which is physically identified with a spatially flat FLRW spacetime.Comment: 23 page

    The no-boundary measure in string theory: Applications to moduli stabilization, flux compactification, and cosmic landscape

    Full text link
    We investigate the no-boundary measure in the context of moduli stabilization. To this end, we first show that for exponential potentials, there are no classical histories once the slope exceeds a critical value. We also investigate the probability distributions given by the no-boundary wave function near maxima of the potential. These results are then applied to a simple model that compactifies 6D to 4D (HBSV model) with fluxes. We find that the no-boundary wave function effectively stabilizes the moduli of the model. Moreover, we find the a priori probability for the cosmological constant in this model. We find that a negative value is preferred, and a vanishing cosmological constant is not distinguished by the probability measure. We also discuss the application to the cosmic landscape. Our preliminary arguments indicate that the probability of obtaining anti de Sitter space is vastly greater than for de Sitter.Comment: 27 pages, 8 figure

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    The no-boundary measure in scalar-tensor gravity

    Full text link
    In this article, we study the no-boundary wave function in scalar-tensor gravity with various potentials for the non-minimally coupled scalar field. Our goal is to calculate probabilities for the scalar field - and hence the effective gravitational coupling and cosmological constant - to take specific values. Most calculations are done in the minisuperspace approximation, and we use a saddle point approximation for the Euclidean action, which is then evaluated numerically. We find that for potentials that have several minima, none of them is substantially preferred by the quantum mechanical probabilities. We argue that the same is true for the stable and the runaway solution in the case of a dilaton-type potential. Technically, this is due to the inclusion of quantum mechanical effects (fuzzy instantons). These results are in contrast to the often held view that vanishing gravitation or cosmological constants would be exponentially preferred in quantum cosmology, and they may be relevant to the cosmological constant problem and the dilaton stabilization problem.Comment: 31 pages, 9 figure
    corecore