5,519 research outputs found

    The nature of solar brightness variations

    Full text link
    The solar brightness varies on timescales from minutes to decades. Determining the sources of such variations, often referred to as solar noise, is of importance for multiple reasons: a) it is the background that limits the detection of solar oscillations, b) variability in solar brightness is one of the drivers of the Earth's climate system, c) it is a prototype of stellar variability which is an important limiting factor for the detection of extra-solar planets. Here we show that recent progress in simulations and observations of the Sun makes it finally possible to pinpoint the source of the solar noise. We utilise high-cadence observations from the Solar Dynamic Observatory and the SATIRE model to calculate the magnetically-driven variations of solar brightness. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface are computed with the MURAM code. We find that surface magnetic field and granulation can together precisely explain solar noise on timescales from minutes to decades, i.e. ranging over more than six orders of magnitude in the period. This accounts for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by CoRoT and Kepler uncovered brightness variations similar to that of the Sun but with much wider variety of patterns. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature Astronom

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    Fisher profiles and perceptions of sea turtle-fishery interactions: case study of East Coast Peninsular Malaysia

    Get PDF
    The paper focuses on coastal fisheries, particularly examining sea turtle-fishery interactions and determining the socioeconomic profile and perception of local fishers about sea turtle issues along the East Coast of Peninsular Malaysia.Turtle fisheries, Nature conservation, Coastal fisheries, Man-induced effects, ISEW, Malaysia, Malaya, Pahang, Malaysia, Malaya, Kelantan, Malaysia, Malaya, Terengganu,

    Strain effects on the thermal properties of ultra-scaled Si nanowires

    Get PDF
    The impact of uniaxial and hydrostatic stress on the ballistic thermal conductance (Îşl\kappa_{l}) and the specific heat (CvC_{v}) of [100] and [110] Si nanowires are explored using a Modified Valence Force Field phonon model. An anisotropic behavior of Îşl\kappa_{l} and isotropic nature of CvC_{v} under strain are predicted for the two wire orientations. Compressive (tensile) strain decreases (increases) CvC_{v}. The CvC_{v} trend with strain is controlled by the high energy phonon sub-bands. Dominant contribution of the low/mid (low/high) energy bands in [100] ([110]) wire and their variation under strain governs the behavior of Îşl\kappa_{l}.Comment: 4 Figures, 8 Pages, submitted to AP

    The Residue Effects of Parental Corporal Punishment on Young Adults\x92 Psychological Adjustment: Evidence From Malaysia

    Get PDF
    The potential impacts of corporal punishment continue to be debated among scholars and policy makers, yet no clear picture has emerged. This study examined the relationship between parental corporal punishment and psychological adjustment among young adults (n = 271) aged 19 to 25 years at a Malaysian public university. Participants completed measures of the ADULT PPQ: Physical Punishment Questionnaire and the ADULT PAQ: Personality Assessment Questionnaire. The findings revealed that parental corporal punishment is a prevalent phenomenon in Malaysia. All parental punishment variables, that is, harshness, justness, and forms of punishment, correlate significantly with the psychological adjustment. The study also showed that perceived parental harshness and maternal justness were found to be the strongest predictors of one’s psychological adjustment for each parent. Paternal and maternal punishment, however, do not differ significantly in predicting young adults’ psychological development. Besides that, the parental prediction model only accounted for 13% to 15% of the variance in psychological adjustment, suggesting that not every child perceived corporal punishment as parental rejection. The results showed that remembered corporal punishment is associated with greater or lesser psychosocial adjustment, depending on whether that corporal punishment was perceived as harsh or just

    Liquid-to-liquid phase transition in pancake vortex systems

    Full text link
    We study the thermodynamics of a model of pancake vortices in layered superconductors. The model is based on the effective pair potential for the pancake vortices derived from the London approximation of a version of the Lawrence-Doniach model which is valid for extreme type-II superconductors. Using the hypernetted-chain (HNC) approximation, we find that there is a temperature below which multiple solutions to the HNC equations exist. By explicitly evaluating the free energy for each solution we find that the system undergoes a first-order transition between two vortex liquid phases. The low-temperature phase has larger correlations along the field direction than the high-temperature phase. We discuss the possible relation of this phase transition to the liquid-to-liquid phase transition recently observed in Y-Ba-Cu-O superconductors in high magnetic fields in the presence of disorder.Comment: 7 pages, 6 figure

    Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain

    Full text link
    We find that quantum teleportation, using the thermally entangled state of two-qubit Heisenberg XX chain as a resource, with fidelity better than any classical communication protocol is possible. However, a thermal state with a greater amount of thermal entanglement does not necessarily yield better fidelity. It depends on the amount of mixing between the separable state and maximally entangled state in the spectra of the two-qubit Heisenberg XX model.Comment: 5 pages, 1 tabl

    Superconducting order parameter in nonmagnetic borocarbides RNi2B2C (R = Y, Lu) probed by point-contact Andreev reflection spectroscopy

    Get PDF
    We report on the measurements of the superconducting order parameter in the nonmagnetic borocarbides LuNi2B2C and YNi2B2C. Andreev conductance spectra are obtained from nanoscale metallic junctions on single crystal surfaces prepared along three major crystallographic orientations: [001], [110], and [100]. The gap values extracted by the single-gap Blonder-Tinkham-Klapwijk model follow the theoretical predictions as a function of temperature and magnetic field and exhibit a small anisotropy with no indication of proposed gap nodes along the [100] and [010] directions. These observations are robust and reproducible among all the measurements on two different sets of LuNi2B2C crystals and one set of YNi2B2C crystals. We suggest that the possible gap nodes in the [100] direction may be masked by two effects: different gap anisotropy across multiple Fermi surfaces, as reported in the recent photoemission spectroscopy, and the large tunneling cone. Our results provide a consistent picture of the superconducting gap structure in these materials, addressing the controversy particularly in the reported results of point-contact Andreev reflection spectroscopy

    Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere

    Full text link
    Ultrathin black phosphorus is a two-dimensional semiconductor with a sizeable band gap. Its excellent electronic properties make it attractive for applications in transistor, logic and optoelectronic devices. However, it is also the first widely investigated two-dimensional material to undergo degradation upon exposure to ambient air. Therefore a passivation method is required to study the intrinsic material properties, understand how oxidation affects the physical properties and enable applications of phosphorene. Here we demonstrate that atomically thin graphene and hexagonal boron nitride can be used for passivation of ultrathin black phosphorus. We report that few-layer pristine black phosphorus channels passivated in an inert gas environment, without any prior exposure to air, exhibit greatly improved n-type charge transport resulting in symmetric electron and hole transconductance characteristics.B.O. acknowledges support by the National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Programme (CRP Award No. NRF-CRP9-2011-3) and the SMF-NUS Research Horizons Award 2009-Phase II. A.H.C.N. acknowledges the NRF-CRP award 'Novel 2D materials with tailored properties: beyond graphene'. The calculations were performed at the GRC computing facilities. A.Z. and D.F.C. acknowledge the NSF grant CHE-1301157. (NRF-CRP9-2011-3 - National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Programme (CRP); SMF-NUS Research Horizons Award-Phase II; NRF-CRP award 'Novel 2D materials with tailored properties: beyond graphene'; CHE-1301157 - NSF)Published versio

    Self-healing efficiency study of thermoset-thermoplastic polymer material

    Get PDF
    This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80oC before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength
    • …
    corecore