5 research outputs found

    Microstructure characterization of onion (A.cepa) peels and thin films for dye sensitized solar cells

    Get PDF
    A.cepa peels are obtained from mature onion bulbs. Because of the continuous need for energy, alternative avenues for producing energy are gaining importance. The motivation for this work is based on an urgent need to source energy from readily available waste materials like domestic onion peels. Dye sensitized solar cells (DSSCs) fabricated via doctor blade method and high temperature sintering from waste (onion peels) are investigated for their ability to convert solar to electrical energy. The charge carriers were revealed under phytochemical screening. Functional groups of compounds present in A.cepa peel were analyzed with Fourier transform in infrared (FTIR). The influence of different electrolyte sensitizer is observed on the DSSCs under standard air mass conditions of 1.5 AM. The microstructure properties of these A.cepa DSSCs were explored using scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), x-ray diffraction and Fluorecence spectroscopy (XRF). The interfacial boundary between A.cepa dye, TiO2 framework of TiO2 and indium doped tin oxide (ITO) reveals several prominent anatase and rutile peaks. Photoelectric results, revealed dye-sensitized solar cells with a maximum power output of 126 W and incident photon to conversion energy (IPCE) of 0.13%.This work has established that A.cepa peels can be used as a source of micro-energy generatio

    Analysis of entropy and effect of surface dynamics on photovoltaic performance

    Get PDF
    We investigate the influences of photoanode on light scattering and absorption in a dye-sensitized solar cell (DSSC). N719 dye on a monolayer anode of TiO2 film and ZnO film, are compared in terms of their photovoltaic conversion efficiency. Doctor blade application and high temperature sintering of photoanode assemblage on indium doped tin oxide glass was adopted for preparation of the two photoanodes. The optical density of the interfacial layer relative to the photogenerated carriers is determined by absorption of ionic electrolytes. The outcome obtained with different photosensitizing effect of organic T.danielliimolecules on DSSCs showed a wide disparity, the highest Voc was recorded with Br- with 500 mV and 79 mV respectively for TiO2 and ZnO photoanode respectively. Three important morphological characterization techniques were used, scanning electron microscopy (SEM) with energy dispersive spectrum (EDS), Electron shell occupancy and Entropy were discussed in detail with respect to their photoelectric performance, the best Iscwas 0.035 mA with Br- on TiO2 attributable to a large optical density, achieved from ratio of area of molecular coverage of nanoparticle film. Scanning electron microscopy (SEM) revealed a structure consisting of direct and ordered paths for photogenerated carriers to the collecting electrodes, the Pmaxresult reported was 36.54 mW with Br- from TiO2

    Comparative study of N719 dye on two different photo-anodes

    Get PDF
    Nano-composites of TiO2 and ZnO were successfully prepared using the doctor blade application and high temperature sintering on indium-doped tin oxide (ITO) glass substrate. They were used as efficient photo anode in high performance dye-sensitized solar cells (DSSCs) assembled with N719 dye. The high-density frameworks of TiO2 and ZnO were synthesized on separate ITO conducting glass using a facile and cost-effective two-step approach to compare the output efficiency. We report on the interfacial boundary relationships, charge – collection conversion efficiency and I-V characteristics of the DSSCs with different electrolytes. The TiO2 photo anode demonstrated an enhanced solar-to-electrical energy conversion of approximately 5.41 % with KCl electrolyte which was far less than that of a ZnO photo anode with KCl electrolyte which had about 21 % increase under conditions of 1.5 AM. Because of the enhanced solar energy conversion of the ZnO photo anode, l.arboreus with KI sensitizer records 9.78 % is a promising candidate for large manufacture of high performance DSSCs modules

    Pi-pi⃰ orbital transitions and photo-degeneracy of C.acuminata sensitized solar cells

    Get PDF
    Dye-sensitized solar cells (DSSCs) have acquired great prominence as favourable low-cost photovoltaics due to their ease of fabrication, all- year -availability, ease of obtaining raw materials and adjustable optical properties like transparency and colour. These advantages coupled with the ability to work under poor lighting makes them a suitable candidate for next generation of research. In this research, C.acuminata-sensitized photo anodes play an important role for achieving high performance since the porous metal oxide films provide a large specific surface area for dye loading and the possibility to extend the absorption threshold of past studies of sensitizers. The doctor blade method and high-temperature sintering were some of the methods used in the fabrication of the photo anode. A study of the performance of the C.acuminata-DSSCs with four different electrolyte sensitizers based on iodide redox mediator is determined. The result is DSSCs that exhibit a maximum power output of 39.37 W, fill factor of 0.7 and a power conversion efficiency of 0.6% under unfavourable sunlight intensity conditions and photo-degradation of about 37.5 % in absorbance after 425 suns
    corecore