2 research outputs found

    Experimentation, simulation and analysis of improvised explosive devices-explosively formed projectile

    Get PDF
    Dentro de los artefactos explosivos improvisados se encuentran aquellos que generan proyectiles formados por explosión, penetradores de blindajes y sistemas acorazados, como los utilizados por grupos insurgentes contra las fuerzas aliadas en zona de operaciones. El objeto de este estudio es reproducir y entender el comportamiento de dichos artefactos explosivos improvisados capaces de generar proyectiles de alta velocidad y gran capacidad de penetración. La comprensión de su comportamiento permitirá mejorar el conocimiento sobre ellos, y por ende, combatirlos de forma más eficaz. Para ello se han realizado los ensayos correspondientes, obteniéndose las primeras caracterizaciones de proyectiles formados por explosión construidos de manera artesanal, tal y como haría un terrorista. Además, se han creado los modelos numéricos correspondientes a cada ensayo, que simulan todo el evento desde su inicio hasta el impacto en el objetivo, recorriendo todos los pasos intermedios. Se han ensayado 3 configuraciones y posteriormente se han simulado, usando el software de análisis por elementos finitos, LS-DYNA® , con una configuración 2 D axisimétrica, con mallados lagrangianos. Los resultados obtenidos por el modelo han alcanzado un alto grado de precisión con relación a los datos experimentales. A partir de aquí se puede concluir que los artefactos explosivos improvisados-proyectiles formados por explosión son una seria amenaza, y que los modelos generados permitirán conocer y ahorrar costes en la lucha contra esta amenaza, y por ende contra el terrorismo, al disponer de un enfoque holístico de la amenaza, y finalmente reducir los costes de la experimentación.Within the category of improvised explosive devices are those that form explosively formed projectiles which penetrate armor and armored systems, such as those used by insurgents against allied forces in operational areas. The purpose of this study is to reproduce and understand the behavior of these improvised explosive devices capable of generating high-velocity, high penetration projectiles. Understanding their behavior will allow for improved knowledge about them, and thus will allow us to more effectively combat them. Thus, the corresponding tests were carried out and the results were obtained from the first characterizations of explosively formed projectiles built using traditional methods, just as a terrorist would have built them. Along with this, numerical models were created for each test simulating the entire event from beginning to impact on the target, including all the intermediate steps. There were three configurations tested and simulated using the software of finite element analysis, LS-DYNA® , a 2-D asymmetric configuration with Lagrangian meshes. The results obtained by the model were compared with data obtained in the experimental tests, yielding a high precision between simulated and tested data. With the data obtained in this study it can be concluded that the improvised explosive devices -explosively formed projectiles is a serious threat. Generated models will allow us to know more about these weapons, to reduce costs in the fight against the threat of improvised explosive devices-explosively formed projectiles and therefore against terrorism with explosively formed projectiles, and to have a holistic approach to the threat and to reduce the cost of experimentation. Minimize the experimental expense.Peer Reviewe

    Experimentation, simulation and analysis of improvised explosive devices-explosively formed projectile

    No full text
    Within the category of improvised explosive devices are those that form explosively formed projectiles which penetrate armor and armored systems, such as those used by insurgents against allied forces in operational areas. The purpose of this study is to reproduce and understand the behavior of these improvised explosive devices capable of generating high-velocity, high penetration projectiles. Understanding their behavior will allow for improved knowledge about them, and thus will allow us to more effectively combat them. Thus, the corresponding tests were carried out and the results were obtained from the first characterizations of explosively formed projectiles built using traditional methods, just as a terrorist would have built them. Along with this, numerical models were created for each test simulating the entire event from beginning to impact on the target, including all the intermediate steps. There were three configurations tested and simulated using the software of finite element analysis, LS-DYNA®, a 2-D asymmetric configuration with Lagrangian meshes. The results obtained by the model were compared with data obtained in the experimental tests, yielding a high precision between simulated and tested data. With the data obtained in this study it can be concluded that the improvised explosive devices -explosively formed projectiles is a serious threat. Generated models will allow us to know more about these weapons, to reduce costs in the fight against the threat of improvised explosive devices-explosively formed projectiles and therefore against terrorism with explosively formed projectiles, and to have a holistic approach to the threat and to reduce the cost of experimentation. Minimize the experimental expense
    corecore