15 research outputs found

    Stabilized Dye–Pigment Formulations with Platy and Tubular Nanoclays

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the nanoclays increases their stability against thermal, oxidative, and acid–base-induced decomposition. Natural organic dyes form stable composites with clays, thus allowing for “green” technology in production of industrial nanopigments. In the presence of high-surface-area alumosilicate materials, semiconductor nanoparticles known as quantum dots are stabilized against agglomeration during their colloid synthesis, resulting in safe colors. The highly dispersed nanoclays such as tubule halloysite can be employed as biocompatible carriers of quantum dots for the dual labeling of living human cells—both for dark-field and fluorescence imaging. Therefore, complexation of dyes with nanoclays allows for new, stable, and inexpensive color formulations

    Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery

    No full text
    © 2017 American Pharmacists Association® Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel

    Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery

    Get PDF
    © 2017 American Pharmacists Association® Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel

    Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery

    No full text
    © 2017 American Pharmacists Association® Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel

    Stabilized Dye–Pigment Formulations with Platy and Tubular Nanoclays

    No full text
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the nanoclays increases their stability against thermal, oxidative, and acid–base-induced decomposition. Natural organic dyes form stable composites with clays, thus allowing for “green” technology in production of industrial nanopigments. In the presence of high-surface-area alumosilicate materials, semiconductor nanoparticles known as quantum dots are stabilized against agglomeration during their colloid synthesis, resulting in safe colors. The highly dispersed nanoclays such as tubule halloysite can be employed as biocompatible carriers of quantum dots for the dual labeling of living human cells—both for dark-field and fluorescence imaging. Therefore, complexation of dyes with nanoclays allows for new, stable, and inexpensive color formulations

    Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials

    No full text
    Halloysite nanotubes (HNTs), naturally occurring as aluminosilicate nanoclay mineral, have recently emerged as a possible nanomaterial for countless applications due to their specific chemical structure, tubular shape, high aspect ratio, biocompatibility and low toxicity. In this study, HNTs were incorporated into the epoxy resin matrix to improve its mechanical properties and thermal stability. However, heterogeneous size, surface charge and surface hydrogen bond formation, result in aggregation of HNTs in epoxies to a certain extent. Three specific techniques were used to integrate HNTs into neat epoxy resin (NE). The structure and morphology of the embedded nanotubes were confirmed by Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Tensile testing was carried out and the fractured surface of the tested specimen was analysed using scanning electron microscopy (SEM). The thermal stability of the prepared nanocomposite materials was investigated by thermogravimetric (TG) and derivative thermogravimetry (DTG) studies. The obtained results indicated that improved properties of HNTs/epoxy nanocomposite materials were related to the unique properties of well-dispersed HNTs, agglomerate scale, and reduced void presence, and could be controlled by the manufacturing processes

    Discovery and Optimization of DNA Gyrase and Topoisomerase IV Inhibitors with Potent Activity against Fluoroquinolone-Resistant Gram-Positive Bacteria.

    Get PDF
    Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones
    corecore