8 research outputs found

    Novel insights into the epidemiology of epidermolysis bullosa (EB) from the Dutch EB Registry:EB more common than previously assumed?

    Get PDF
    Background Epidermolysis bullosa (EB) is a heterogeneous group of rare and incurable genetic disorders characterized by fragility of the skin and mucosae, resulting in blisters and erosions. Several epidemiological studies in other populations have been carried out, reporting varying and sometimes inconclusive figures, highlighting the need for standardized epidemiological analyses in well-characterized cohorts. Objectives To evaluate the epidemiological data on EB in the Netherlands, extracted from the molecularly well-characterized cohort in the Dutch EB Registry. Methods In this observational study all EB-patients that were based in the Netherlands and captured in the Dutch EB Registry between 1988 and 2018 were included. The epidemiological outcomes were based on complete diagnostic data (clinical features, immunofluorescence, electron microscopy and mutation analysis), with longitudinal follow-up. Results A total of 464 EB-patients (287 families) were included. The incidence and point-prevalence of EB in the Netherlands were 41.3 per million live births and 22.4 per million population, respectively. EB Simplex (EBS), Junctional EB (JEB), Dystrophic EB (DEB) and Kindler EB were diagnosed in 45.7%, 18.8%, 34.7% and 0.9% of the EB-patients, respectively, with an incidence and point-prevalence of 17.5 and 11.9 (EBS), 9.3 and 2.1 (JEB), 14.1 and 8.3 (DEB), 0.5 and 0.2 (Kindler EB). In 90.5% of the EB-patients the diagnosis was genetically confirmed. During the investigated time period 73 EB-patients died, 72.6% of whom as a direct consequence of their EB. Conclusion The epidemiological outcomes of EB in the Netherlands are high, attributed to a high detection rate in a well-organized set-up, indicating that EB might be more common than previously assumed. These epidemiological data help to understand the extensive need for (specialized) medical care of EB-patients and is invaluable for the design and execution of therapeutic trials. This study emphasizes the importance of thorough reporting systems and registries worldwide

    Cardiomyopathy in patients with epidermolysis bullosa simplex with mutations in KLHL24

    Get PDF
    Dominant mutations in the KLHL24 gene, encoding for kelch-like protein 24, have been implicated in the pathogenesis of epidermolysis bullosa simplex (EBS). So far, 26 patients from different ethnicities have been reported and all of them harboured a heterozygous KLHL24 start-codon mutation, with c.1A>G;p.Met1? being the most prevalent.1-3 Through this report, we aimed to expand the phenotypic spectrum by incorporating additional findings, in particular, dilated cardiomyopathy, seen in a Dutch family. This article is protected by copyright. All rights reserved

    High Mutability of the Tumor Suppressor Genes RASSF1 and RBSP3 (CTDSPL) in Cancer

    Get PDF
    BACKGROUND:Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. METHODOLOGY/PRINCIPAL FINDINGS:We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1-2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3-5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. CONCLUSIONS/SIGNIFICANCE:This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread

    Whole exome-sequencing of vitiligo lesions indicate lower burden of somatic variations: implications in risk for non-melanoma skin cancers

    No full text
    Genetic depigmentary conditions such as albinism with complete loss of epidermal pigmentation pose a higher risk for cutaneous malignancies ( Lekalakala et al., 2015 ). By analogy, clinical management for photoprotection of the acquired depigmented skin in vitiligo is of serious concern. It is believed that vitiligo would pose a similar, elevated risk. Systematic evaluation of a large cohort of vitiligo subjects indicated a decreased risk for both melanoma and non-melanoma skin cancers ( Hexsel et al., 2009 ; Kim et al., 2020 ; Paradisi et al., 2014 ; Rodrigues, 2017 ; Schallreuter et al., 2002 ; Teulings et al., 2013 ; Weng et al., 2021 ). Extrapolating from demographic studies, it is tempting to speculate that vitiligo could negatively influence either initiation or progression of cutaneous malignancies ( Rodrigues, 2017 ). Given the autoimmune etiology that targets melanocyte destruction, protection against melanoma could be rationalized, however a similar protection from non-melanoma skin cancer is perplexing. Therefore, these observations need to be substantiated with evidence at the tissue level. Recent advancements in genomics enables to map the somatic variations which would act as molecular correlate for cancer. In normal, seemingly healthy skin deep-sequencing of selected panel of cancer associated genes suggests pervasive positive selection of somatic variations that provides valuable insights into the origin of mutations and map their progression to skin cancers ( Martincorena et al., 2015 ; Zheng et al., 2021 )

    Molecular mechanisms underlying the MiT translocation subgroup of renal cell carcinomas.

    No full text
    Item does not contain fulltextRenal cell carcinomas (RCCs) represent a heterogeneous group of neoplasms, which differ in histological, pathologic and clinical characteristics. The tumors originate from different locations within the nephron and are accompanied by different recurrent (cyto)genetic anomalies. Recently, a novel subgroup of RCCs has been defined, i.e., the MiT translocation subgroup of RCCs. These tumors originate from the proximal tubule of the nephron, exhibit pleomorphic histological features including clear cell morphologies and papillary structures, and are found predominantly in children and young adults. In addition, these tumors are characterized by the occurrence of recurrent chromosomal translocations, which result in disruption and fusion of either the TFE3 or TFEB genes, both members of the MiT family of basic helix-loop-helix/leucine-zipper transcription factor genes. Hence the name MiT translocation subgroup of RCCs. In this review several features of this RCC subgroup will be discussed, including the molecular mechanisms that may underlie their development

    Emerging small-molecule treatments for multiple sclerosis: focus on B cells

    No full text
    corecore