220 research outputs found

    DNA Binding and Degradation by the HNH Protein ColE7

    Get PDF
    The bacterial toxin ColE7 bears an HNH motif which has been identified in hundreds of prokaryotic and eukaryotic endonucleases, involved in DNA homing, restriction, repair, or chromosome degradation. The crystal structure of the nuclease domain of ColE7 in complex with a duplex DNA has been determined at 2.5 Å resolution. The HNH motif is bound at the minor groove primarily to DNA phosphate groups at and beyond the 3′ side of the scissile phosphate, with little interaction with ribose groups and bases. This result provides a structural basis for sugar- and sequence-independent DNA recognition and the inhibition mechanism by inhibitor Im7, which blocks the substrate binding site but not the active site. Structural comparison shows that two families of endonucleases bind and bend DNA in a similar way to that of the HNH ColE7, indicating that endonucleases containing a “ββα-metal” fold of active site possess a universal mode for protein-DNA interactions

    Look, the World is Watching How We Treat Migrants! The Making of the Anti-Trafficking Legislation during the Ma Administration

    Get PDF
    Employing the spiral model, this research analyses how anti-human trafficking legislation was promulgated during the Ma Ying-jeou (Ma Yingjiu) presidency. This research found that the gov- ernment of Taiwan was just as accountable for the violation of mi- grants’ human rights as the exploitive placement agencies and abusive employers. This research argues that, given its reliance on the United States for political and security support, Taiwan has made great ef- forts to improve its human rights records and meet US standards for protecting human rights. The reform was a result of multilevel inputs, including US pressure and collaboration between transnational and domestic advocacy groups. A major contribution of this research is to challenge the belief that human rights protection is intrinsic to dem- ocracy. In the same light, this research also cautions against Taiwan’s subscription to US norms since the reform was achieved at the cost of stereotyping trafficking victimhood, legitimising state surveillance, and further marginalising sex workers

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [<1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    A Novel Technique for Recurrent Tube Exposure Repair

    No full text
    Purpose. Tube exposure can lead to vision-threatening consequences and requires prompt surgical attention. Posterior repositioning of the tube to the pars plana has previously been reported as a successful technique. However, this method requires a pars plana vitrectomy (PPV). Here, we describe a novel technique of repositioning the tube into the ciliary sulcus without requiring PPV. Methods. This is a retrospective interventional case report of two patients who had undergone prior glaucoma drainage device implantation and prior tube exposure repair and developed recurrent tube exposure. Tube exposure in the subjects was repaired by repositioning the tube in the ciliary sulcus. Results. The two eyes remained exposure free postoperatively with 51- and 60-month follow-ups. Conclusions. Repositioning the tube to the ciliary sulcus may be an effective technique to avoid reexposure

    Right Hepatic Artery Pseudoaneurysm Ruptured Into the Gallbladder Demonstrated by Magnetic Resonance Angiography

    Get PDF
    Rupture of a right hepatic artery pseudoaneurysm into the gallbladder is very rare. We demonstrated a 20-mm dumbbell-shaped pseudoaneurysm in the gallbladder lumen by using contrast-enhanced magnetic resonance angiography in a 73-year-old man with acute right upper abdominal pain. Inflammation of the gallbladder caused by calculous cholecystitis, which leads to biliary leakage and erodes the right hepatic artery, could have been the cause

    Disulfide Bond Formation at the C Termini of Vaccinia Virus A26 and A27 Proteins Does Not Require Viral Redox Enzymes and Suppresses Glycosaminoglycan-Mediated Cell Fusion▿ †

    No full text
    Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion
    corecore