4 research outputs found

    Risk factors for diabetic foot ulcers mortality and novel negative pressure combined with platelet-rich plasma therapy in the treatment of diabetic foot ulcers

    Get PDF
    The purpose of this study was to assess the risk factors for morbidity and mortality of diabetic foot ulcers (DFUs). For the treatment of diabetic foot ulcers, negative pressure wound therapy (NPWT) combined with platelet-rich plasma-fibrin glue (PRP) was also investigated. There were 653 patients in the diabetic foot ulcer group and 510 patients in the diabetic patients without foot ulceration (NFU) group, for a total of 1163 patients in the study samples after individuals without follow-up were excluded. The patients were randomized into two groups: the negative pressure wound therapy group and the negative pressure wound therapy combined with the PRP group. The findings of the univariate analysis revealed the blood indicators for predicting diabetic foot ulcer morbidity risk factors, such as C-reactive protein, albumin, creatinine, alkaline phosphatase, procalcitonin, platelets, 25-hydroxyvitamin D, β-2-microglobulin, monocyte ratio, low-density protein cholesterol (LDL), triglyceride, alanine aminotransferase (ALT), aminotransferase (AST), creatine kinase (CK) and total cholesterol. Using logistic regression analysis revealed only albumin and age to be independent predictors of diabetic foot ulcer mortality. Our study also revealed that, compared to negative pressure wound therapy alone, negative pressure wound therapy combined with PRP accelerated wound healing and reduced the mortality rate. According to the findings of this pilot study, new risk factors for diabetic foot ulcer morbidity and mortality have been found, and negative pressure wound therapy combined with PRP therapy may provide the first information that it is an effective adjunct treatment for diabetic foot ulcers

    An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting

    No full text
    While the CuBi2O4-based photocathode has emerged as an ideal candidate for photoelectrochemical water splitting, it is still far from its theoretical values due to poor charge carrier transport, poor electron–hole separation, and instability caused by self-photoelectric-corrosion with electrolytes. Establishing synthesis methods to produce a CuBi2O4 photocathode with sufficient cocatalyst sites would be highly beneficial for water splitting. Here, the platinum-enriched porous CuBi2O4 nanofiber (CuBi2O4/Pt) with uniform coverage and high surface area was prepared as a photocathode through an electrospinning and electrodeposition process for water splitting. The prepared photocathode material was composed of a CuBi2O4 nanofiber array, which has a freestanding porous structure, and the Pt nanoparticle is firmly embedded on the rough surface. The highly porous nanofiber structures allow the cocatalyst (Pt) better alignment on the surface of CuBi2O4, which can effectively suppress the electron–hole recombination at the electrolyte interface. The as-fabricated CuBi2O4 nanofiber has a tetragonal crystal structure, and its band gap was determined to be 1.8 eV. The self-supporting porous structure and electrocatalytic activity of Pt can effectively promote the separation of electron–hole pairs, thus obtaining high photocurrent density (0.21 mA/cm2 at 0.6 V vs. RHE) and incident photon-to-current conversion efficiency (IPCE, 4% at 380 nm). This work shows a new view for integrating an amount of Pt nanoparticles with CuBi2O4 nanofibers and demonstrates the synergistic effect of cocatalysts for future solar water splitting

    The Effect of EGR1 on the Proliferation of Dermal Papilla Cells

    No full text
    Early growth response factor 1 (EGR1) is a zinc-finger transcription factor that plays a vital role in the development of hair follicles. According to our previous studies, EGR1 is a transcriptional promoter of the bone morphogenetic protein 7 (BMP7), a candidate gene involved in the proliferation of dermal papilla cells. Since hair follicles are the basis of lambskin pattern formation and dermal papilla cells (DPCs) act on hair follicle growth, in order to elucidate the role of EGR1 and hair follicles, this study aimed to investigate the biological role of EGR1 in DPCs. In our study, the EGR1 coding sequence (CDS) region was firstly cloned by polymerase chain reaction, and bioinformatics analysis was performed. Then, the function of EGR1 was detected by 5-ethynyl-2’-deoxyuridine (EDU) and Cell Counting Kit-8 (CCK8), and Western blot (WB) was conducted to analyze the cellular effect of EGR1 on DPCs. The proliferative effect of EGR1 on DPCs was also further confirmed by detecting its expression by qPCR and WB on marker genes of proliferation, including PCNA and CDK2. The sequence of the EGR1 CDS region of a lamb was successfully cloned, and its nucleic acid sequence was analyzed and found to be highly homologous to Rattus norvegicus, Mus musculus, Bos taurus and Homo sapiens. Predictive analysis of the protein encoded by EGR1 revealed that it is an extra-membrane protein, and not a secretory protein, with subcellular localization in the nucleus and cytoplasm. The proliferative effect of DPCs was significantly stronger (p < 0.01) in EGR1 up-regulated DPCs compared to the controls, while the opposite result was observed in EGR1 down-regulated DPCs. Markers of proliferation including PCNA and CDK2 also appeared to be differentially upregulated in EGR1 gene overexpression compared to the controls, with the opposite result in EGR1 gene downregulation. In summary, our study revealed that EGR1 promotes the proliferation of DPCs, and we speculate that EGR1 may be closely associated with hair follicle growth and development

    Novel Umami Peptides from Mushroom (Agaricus bisporus) and Their Umami Enhancing Effect via Virtual Screening and Molecular Simulation

    No full text
    This study aimed to identify novel umami peptides in Agaricus bisporus and investigate their umami enhancing effect. We virtually screened 155 potential umami peptides from the ultrasound-assisted A. bisporus hydrolysate according to Q values, iUmami-SCM, Umami_YYDS, and Tastepeptides_DM models, and molecular docking. Five peptides (AGKNTNGSQF, DEAVARGATF, REESDFQSSF, SEETTTGVHH, and WNNDAFQSSTN) were synthesized for sensory evaluation and kinetic analysis. The result showed that the umami thresholds of the five peptides were in the range of 0.21–0.40 mmol/L. Notably, REESDFQSSF, SEETTTGVHH, and WNNDAFQSSTN had low dissociation constant (KD) values and high affinity for the T1R1-VFT receptor. The enhancing effect of the three peptides with MSG or IMP was investigated by sensory evaluation, kinetic analysis, and molecular dynamics simulations. In stable complexes, ARG_277 in T1R1 played a major role in umami peptide binding to T1R1-VFT. These results provide a theoretical basis for future screening of umami peptides and improving the umami taste of food containing mushrooms
    corecore