505 research outputs found

    Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability

    Full text link
    We study the possibility to use interaction between a polar molecule in the ground electronic and vibrational state and a Rydberg atom to construct two-qubit gates between molecular qubits and to coherently control molecular states. A polar molecule within the electron orbit in a Rydberg atom can either shift the Rydberg state, or form Rydberg molecule. Both the atomic shift and the Rydberg molecule states depend on the initial internal state of the polar molecule, resulting in molecular state dependent van der Waals or dipole-dipole interaction between Rydberg atoms. Rydberg atoms mediated interaction between polar molecules can be enhanced up to 10310^{3} times. We describe how the coupling between a polar molecule and a Rydberg atom can be applied to coherent control of molecular states, specifically, to individual addressing of molecules in an optical lattice and non-destructive readout of molecular qubits

    Spatiotemporal microbial evolution on antibiotic landscapes

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in thisA key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front.While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front,we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behindmore sensitive lineages.TheMEGA-plate provides a versatile platformfor studying microbial adaption and directly visualizing evolutionary dynamics.National Defense Science and Engineering Graduate fellowshipNIHEuropean Union FP

    New Quantum Bounds for Inequalities involving Marginal Expectations

    Full text link
    We review, correct, and develop an algorithm which determines arbitrary Quantum Bounds, based on the seminal work of Tsirelson [Lett. Math. Phys. 4, 93 (1980)]. The potential of this algorithm is demonstrated by deriving both new number-valued Quantum Bounds, as well as identifying a new class of function-valued Quantum Bounds. Those results facilitate an 8-dimensional Volume Analysis of Quantum Mechanics which extends the work of Cabello [PRA 72 (2005)]. We contrast the Quantum Volume defined be these new bounds to that of Macroscopic Locality, defined by the inequalities corresponding to the first level of the hierarchy of Navascues et al [NJP 10 (2008)], proving our function-valued Quantum Bounds to be more complete.Comment: 6 pages. Now includes appendices containing a pseudo-code formulation of the algorithm as well as a discussion of general physical symmetries. A new lower bound to the quantum volume has been derived, and an error in the mapping of physical observables to variational parameters has been correcte

    Nonlinear optics via double dark resonances

    Get PDF
    Double dark resonances originate from a coherent perturbation of a system displaying electromagnetically induced transparency. We experimentally show and theoretically confirm that this leads to the possibility of extremely sharp resonances prevailing even in the presence of considerable Doppler broadening. A gas of 87Rb atoms is subjected to a strong drive laser and a weak probe laser and a radio frequency field, where the magnetic coupling between the Zeeman levels leads to nonlinear generation of a comb of sidebands.Comment: 6 pages, 9 figure

    Single photon nonlinearities using arrays of cold polar molecules

    Full text link
    We model single photon nonlinearities resulting from the dipole-dipole interactions of cold polar molecules. We propose utilizing ``dark state polaritons'' to effectively couple photon and molecular states; through this framework, coherent control of the nonlinearity can be expressed and potentially used in an optical quantum computation architecture. Due to the dipole-dipole interaction the photons pick up a measurable nonlinear phase even in the single photon regime. A manifold of protected symmetric eigenstates is used as basis. Depending on the implementation, major sources of decoherence result from non-symmetric interactions and phonon dispersion. We discuss the strength of the nonlinearity per photon and the feasibility of this system.Comment: 8 pages, 9 figures Accepted for publication in Physical Review
    corecore