3 research outputs found

    Intragenic CFTR Duplication and 5T/12TG Variant in a Patient with Non-Classic Cystic Fibrosis

    Get PDF
    Cystic fibrosis (CF) is an autosomal recessive disorder characterized by the accumulation of sticky and heavy mucus that can damage several organs. CF shows variable expressivity in affected individuals, but it typically causes respiratory and digestive complications as well as congenital bilateral absence of the vas deferens in males. Individuals with classic CF usually have variants that produce a defective protein from both alleles of the CFTR gene. Individuals with other variants may present with classic, non-classic, or milder forms of CF due to lower levels of functional CFTR protein. This article reports the genetic analysis of a female with features of asthma and mild or non-classic CF. CFTR sequencing demonstrated that she is a carrier for a maternally derived 5T/12TG variant. Deletion/duplication analysis by multiplex ligation-dependent probe amplification (MLPA) showed the presence of an intragenic paternally derived duplication involving exons 7-11 of the CFTR gene. This duplication is predicted to result in the production of a truncated CFTR protein lacking the terminal part of the nucleotide-binding domain 1 (NBD1) and thus is likely to be a non-functioning allele. The combination of this large intragenic duplication and 5T/12TG is the probable cause of the mild or non-classic CF features in this individual

    Immunoreactive Trypsinogen in Infants Born to Women with Cystic Fibrosis Taking Elexacaftor-Tezacaftor-Ivacaftor

    No full text
    Most people with cystic fibrosis (CF) are diagnosed following abnormal newborn screening (NBS), which begins with measurement of immunoreactive trypsinogen (IRT) values. A case report found low concentrations of IRT in an infant with CF exposed to the CF transmembrane conductance regulator (CFTR) modulator, elexacaftor–tezacaftor–ivacaftor (ETI), in utero. However, IRT values in infants born to mothers taking ETI have not been systematically assessed. We hypothesized that ETI-exposed infants have lower IRT values than newborns with CF, CFTR-related metabolic syndrome/CF screen positive, inconclusive diagnosis (CRMS/CFSPID), or CF carriers. IRT values were collected from infants born in Indiana between 1 January 2020, and 2 June 2022, with ≥1 CFTR mutation. IRT values were compared to infants born to mothers with CF taking ETI followed at our institution. Compared to infants identified with CF (n = 51), CRMS/CFSPID (n = 21), and CF carriers (n = 489), ETI-exposed infants (n = 19) had lower IRT values (p < 0.001). Infants with normal NBS results for CF had similar median (interquartile range) IRT values, 22.5 (16.8, 30.6) ng/mL, as ETI-exposed infants, 18.9 (15.2, 26.5). IRT values from ETI-exposed infants were lower than for infants with abnormal NBS for CF. We recommend that NBS programs consider performing CFTR variant analysis for all ETI-exposed infants

    Interventions to improve system-level coproduction in the Cystic Fibrosis Learning Network

    No full text
    Background Coproduction is defined as patients and clinicians collaborating equally and reciprocally in healthcare and is a crucial concept for quality improvement (QI) of health services. Learning Health Networks (LHNs) provide insights to integrate coproduction with QI efforts from programmes from various health systems.Objective We describe interventions to develop and maintain patient and family partner (PFP) coproduction, measured by PFP-reported and programme-reported scales. We aim to increase percentage of programmes with PFPs reporting active QI work within their programme, while maintaining satisfaction in PFP-clinician relationships.Methods Conducted in the Cystic Fibrosis Learning Network (CFLN), an LHN comprising over 30 cystic fibrosis (CF) programmes, people with CF, caregivers and clinicians cocreated interventions in readiness awareness, inclusive PFP recruitment, onboarding process, partnership development and leadership opportunities. Interventions were adapted by CFLN programmes and summarised in a change package for existing programmes and the orientation of new ones. We collected monthly assessments for PFP and programme perceptions of coproduction and PFP self-rated competency of QI skills and satisfaction with programme QI efforts. We used control charts to analyse coproduction scales and run charts for PFP self-ratings.Results Between 2018 and 2022, the CFLN expanded to 34 programmes with 52% having ≥1 PFP reporting active QI participation. Clinicians from 76% of programmes reported PFPs were actively participating or leading QI efforts. PFPs reported increased QI skills competency (17%–32%) and consistently high satisfaction and feeling valued in their work.Conclusions Implementing system-level programmatic strategies to engage and sustain partnerships between clinicians and patients and families with CF improved perceptions of coproduction to conduct QI work. Key adaptable strategies for programmes included onboarding and QI training, supporting multiple PFPs simultaneously and developing financial recognition processes. Interventions may be applicable in other health conditions beyond CF seeking to foster the practice of coproduction
    corecore