4 research outputs found

    Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review

    Full text link
    The growing health and environmental concerns associated with the consumption of fossil energy sources catalyze the production of biofuels as renewable energy carriers for heat and electricity generation. Production of biofuels from biomass, being the most available renewable feedstock, is advantageous as it results in increased mitigation of GHGs (greenhouse gas) emissions. Co-firing biomass pellet in power plants is a promising way of using biomass for renewable energy generation. Among the various thermochemical conversion routes, torrefaction represents an efficient low-temperature pyrolysis technology to produce co-firing biofuel at 200–300 °C with low conversion losses. However, the current practice of using conventional heating in batch operation adversely affects oil palm torrefaction, leading to low throughput, low biomass processing rate, and poor heat transfer rate. Integration of microwave technology has emerged as a promising solution to enhance the upscaling capacity of torrefaction technology, offering higher production rates and better volumetric heat transfer. The present work critically reviews and discusses the latest developments in the torrefaction of oil palm waste to produce energy-dense biochar with reduced moisture content (for better water resistivity and durability). The use of microwave radiation as a heating method could also catalyze the torrefaction reaction with lower activation energy. In conclusion, microwave systems incorporated into continuous reactors seem to have great potential in streamlining torrefaction processes, thereby producing environmentally friendly energy

    Advances in porous material research towards the management of air pollution

    No full text
    corecore