13 research outputs found

    Genomic analysis of the original Elberg Brucella melitensis Rev.1 vaccine strain reveals insights into virulence attenuation

    No full text
    The live attenuated Brucella melitensis Rev.1 Elberg-originated vaccine strain has been widely used to control brucellosis in small ruminants. However, despite extensive research, the molecular mechanisms underlying the attenuation of this strain are still unknown. In the current study, we conducted a comprehensive comparative analysis of the whole-genome sequence of Rev.1 against that of the virulent reference strain, B. melitensis 16M. This analysis revealed five regions of insertion and three regions of deletion within the Rev.1 genome, among which, one large region of insertion, comprising 3,951 bp, was detected in the Rev.1 genome. In addition, we found several missense mutations within important virulence-related genes, which may be used to determine the mechanism underlying virulence attenuation. Collectively, our findings provide new insights into the Brucella virulence mechanisms and, therefore, may serve as a basis for the rational design of new Brucella vaccines

    Simulation and visualization of multiple KEGG pathways using BioNSi [version 2; referees: 2 approved, 1 approved with reservations]

    No full text
    Motivation: Many biologists are discouraged from using network simulation tools because these require manual, often tedious network construction. This situation calls for building new tools or extending existing ones with the ability to import biological pathways previously deposited in databases and analyze them, in order to produce novel biological insights at the pathway level. Results: We have extended a network simulation tool (BioNSi), which now allows merging of multiple pathways from the KEGG pathway database into a single, coherent network, and visualizing its properties. Furthermore, the enhanced tool enables loading experimental expression data into the network and simulating its dynamics under various biological conditions or perturbations. As a proof of concept, we tested two sets of published experimental data, one related to inflammatory bowel disease condition and the other to breast cancer treatment. We predict some of the major observations obtained following these laboratory experiments, and provide new insights that may shed additional light on these results. Tool requirements: Cytoscape 3.x, JAVA 8 Availability: The tool is freely available at http://bionsi.wix.com/bionsi, where a complete user guide and a step-by-step manual can also be found

    Genomic Analysis of Natural Rough Brucella melitensis Rev.1 Vaccine Strains: Identification and Characterization of Mutations in Key Genes Associated with Bacterial LPS Biosynthesis and Virulence

    No full text
    Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis

    Staphylococcus aureus NrdH Redoxin Is a Reductant of the Class Ib Ribonucleotide Reductase▿ †

    No full text
    Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used

    Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex

    No full text
    The human cis-prenyltransferase (hcis-PT) complex synthesizes the precursor of the glycosyl carrier dolichol-phosphate and as such it is essential for protein N-glycosylation. The crystal structure of the complex reveals unusual tetrameric architecture and provides insights into dolichol synthesis mechanism and functional consequences of disease-associated hcis-PT mutations

    Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB

    No full text
    Pseudomonas putida GPo1 alkane hydroxylase (AlkB) is an integral membrane protein that catalyses the hydroxylation of medium-chain alkanes (C -C). 1-Octyne irreversibly inhibits this non-haem di-iron mono-oxygenase under turnover conditions, suggesting that it acts as a mechanism-based inactivator. Upon binding to the active site, 1-octyne is postulated to be oxidized to an oxirene that rapidly rearranges to a reactive ketene which covalently acylates nearby residues, resulting in enzyme inactivation. In analysis of inactivated AlkB by LC- MS/MS, several residues exhibited a mass increase of 126.1 Da, corresponding to the octanoyl moiety derived from oxidative activation of 1-octyne.Mutagenesis studies of conserved acylated residues showed that Lys plays a critical role in enzyme function, as a single-point mutation of Lys to alanine (K A) completely abolished enzymatic activity. Finally, we present a computational 3D model structure of the transmembrane domain of AlkB, which revealed the overall packing arrangement of the transmembrane helices within the lipid bilayer and the location of the active site mapped by the 1-octyne modifications

    Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

    No full text
    Genetic syndromes involving both brain and eye abnormalities are numerous and include syndromes such as Warburg micro syndrome, Kaufman oculocerebrofacial syndrome, Cerebro-oculo-facio-skeletal syndrome, Kahrizi syndrome and others. Using exome sequencing, we have been able to identify homozygous mutation p.(Tyr39Cys) in MED25 as the cause of a syndrome characterized by eye, brain, cardiac and palatal abnormalities as well as growth retardation, microcephaly and severe intellectual disability in seven patients from four unrelated families, all originating from the same village. The protein encoded by MED25 belongs to Mediator complex or MED complex, which is an evolutionary conserved multi-subunit RNA polymerase II transcriptional regulator complex. The MED25 point mutation is located in the von Willebrand factor type A (MED25 VWA) domain which is responsible for MED25 recruitment into the Mediator complex; co-immunoprecipitation experiment demonstrated that this mutation dramatically impairs MED25 interaction with the Mediator complex in mammalian cells
    corecore