866 research outputs found

    Restoration of kTk_T factorization for low pTp_T hadron hadroproduction

    Full text link
    We discuss the applicability of the kTk_T factorization theorem to low-pTp_T hadron production in hadron-hadron collision in a simple toy model, which involves only scalar particles and gluons. It has been shown that the kTk_T factorization for high-pTp_T hadron hadroproduction is broken by soft gluons in the Glauber region, which are exchanged among a transverse-momentum-dependent (TMD) parton density and other subprocesses of the collision. We explain that the contour of a loop momentum can be deformed away from the Glauber region at low pTp_T, so the above residual infrared divergence is factorized by means of the standard eikonal approximation. The kTk_T factorization is then restored in the sense that a TMD parton density maintains its universality. Because the resultant Glauber factor is independent of hadron flavors, experimental constraints on its behavior are possible. The kTk_T factorization can also be restored for the transverse single-spin asymmetry in hadron-hadron collision at low pTp_T in a similar way, with the residual infrared divergence being factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ

    Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems

    Full text link
    We calculate the current and the spin-torque in small symmetric double tunnel barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems. Spin-accumulation on the superconductor governs the transport properties when the spin-flip relaxation time is longer than the transport dwell time. In the elastic transport regime, it is demonstrated that the relative change in the current (spin-torque) for F-S-F systems equals the relative change in the current (spin-torque) for F-N-F systems upon changing the relative magnetization direction of the two ferromagnets. This differs from the results in the inelastic transport regime where spin-accumulation suppresses the superconducting gap and dramatically changes the magnetoresistance [S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The experimental relevance of the elastic and inelastic transport regimes, respectively, as well as the reasons for the change in the transport properties are discussed.Comment: 7 page

    Diffuse liver disease classification from ultrasound surface characterization, clinical and laboratorial data

    Get PDF
    In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease

    kTk_T factorization of exclusive processes

    Get PDF
    We prove kTk_T factorization theorem in perturbative QCD (PQCD) for exclusive processes by considering πγγ(π)\pi\gamma^*\to \gamma(\pi) and Bγ(π)lνˉB\to\gamma(\pi) l\bar\nu. The relevant form factors are expressed as the convolution of hard amplitudes with two-parton meson wave functions in the impact parameter bb space, bb being conjugate to the parton transverse momenta kTk_T. The point is that on-shell valence partons carry longitudinal momenta initially, and acquire kTk_T through collinear gluon exchanges. The bb-dependent two-parton wave functions with an appropriate path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant. We compare the predictions for two-body nonleptonic BB meson decays derived from kTk_T factorization (the PQCD approach) and from collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure

    The transition from the adiabatic to the sudden limit in core level photoemission: A model study of a localized system

    Full text link
    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. The system is modelled by three electron levels, one core level and two outer levels. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. We calculate the ratio r(omega) between the weights of the satellite and the main peak as a function of the photon energy omega. The transition from the adiabatic to the sudden limit takes place for quite small photoelectron kinetic energies. For such small energies, the variation of the dipole matrix element is substantial and described by the energy scale Ed. Without the coupling to the photoelectron, the corresponding ratio r0(omega) is determined by Ed and the satellite excitation energy dE. When the interaction potential with the continuum states is introduced, a new energy scale Es=1/(2Rs^2) enters, where Rs is a length scale of the interaction potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(omega)/r0(omega) is larger than its limiting value for large omega. The interference becomes small or weakly destructive for photoelectron energies of the order Es. For larger energies r(omega)/r0(omega) therefore typically has a weak undershoot. If this undershoot is neglected, r(omega)/r0(omega) reaches its limiting value on the energy scale Es.Comment: 18 pages, latex2e, 13 eps figure

    From semiclassical transport to quantum Hall effect under low-field Landau quantization

    Full text link
    The crossover from the semiclassical transport to quantum Hall effect is studied by examining a two-dimensional electron system in an AlGaAs/GaAs heterostructure. By probing the magneto-oscillations, it is shown that the semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the minima of the longitudinal resistivity approach zero. The extension of the applicable range of the SdH theory could be due to the damping effects resulting from disorder and temperature. Moreover, we observed plateau-plateau transition like behavior with such an extension. From our study, it is important to include the positive magnetoresistance to refine the SdH theory.Comment: 11 pages, 5 figure

    Emerging threat of thrips-borne Melon yellow spot virus on melon and watermelon in Taiwan

    Get PDF
    The thrips-borne Melon yellow spot virus (MYSV) has recently been found infecting cucurbits in Taiwan. However, this virus was indistinguishable from another thrips-borne virus species Watermelon silver mottle virus (WSMoV), which has been devastating on cucurbits in Taiwan for decades, when the antisera against their nucleocapsid proteins (NPs) were used for diagnosis. To understand the incidences of WSMoV and MYSV in melon and watermelon fields, a survey was conducted in central and southern Taiwan from July 2007 to December 2009. The samples collected from symptomatic plants were tested by indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies (MAbs) specific to the NP of WSMoV or MYSV and the reliability of the results was verified by reverse transcription-polymerase chain reaction (RT-PCR) using species-specific primers. Among a total of 10,480 melon samples collected, 6% and 18.2% of them were found singly infected with WSMoV and MYSV, respectively, and 0.16% infected with both viruses. On the other hand, among 1,811 watermelon samples assayed, 22.4% and 9.2% samples were singly infected with WSMoV and MYSV, respectively, and 0.17% were infected with both viruses. In addition, the aphid-borne viruses Zucchini yellow mosaic virus (ZYMV), Papaya ringspot virus watermelon type (PRSV-W) and Cucumber mosaic virus (CMV) were also detected as prevalent viruses. Our results indicated that mixed infection with the two thrips-borne viruses is rare. Moreover, host preference for both viruses is different; WSMoV prevails on watermelon whereas MYSV is more widespread on melon. We conclude that MYSV has become a serious threat for watermelon and melon production in Taiwan and the possible control measures are discussed

    Electronic structure of NiS_{1-x}Se_x

    Full text link
    We investigate the electronic structure of the metallic NiS1x_{1-x}Sex_x system using various electron spectroscopic techniques. The band structure results do not describe the details of the spectral features in the experimental spectrum, even for this paramagnetic metallic phase. However, a parameterized many-body multi-band model is found to be successful in describing the Ni~2pp core level and valence band, within the same model. The asymmetric line shape as well as the weak intensity feature in the Ni~2pp core level spectrum has been ascribed to extrinsic loss processes in the system. The presence of satellite features in the valence band spectrum shows the existence of the lower Hubbard band, deep inside the pdpd metallic regime, consistent with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure

    Applicability of perturbative QCD to ΛbΛc\Lambda_b \to \Lambda_c decays

    Full text link
    We develop perturbative QCD factorization theorem for the semileptonic heavy baryon decay ΛbΛclνˉ\Lambda_b \to \Lambda_c l\bar{\nu}, whose form factors are expressed as the convolutions of hard bb quark decay amplitudes with universal Λb\Lambda_b and Λc\Lambda_c baryon wave functions. Large logarithmic corrections are organized to all orders by the Sudakov resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is applicable to ΛbΛc\Lambda_b \to \Lambda_c decays for velocity transfer greater than 1.2. Under requirement of heavy quark symmetry, we predict the branching ratio B(ΛbΛclνˉ)2B(\Lambda_b \to \Lambda_c l{\bar\nu})\sim 2%, and determine the Λb\Lambda_b and Λc\Lambda_c baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results are changed, but the conclusion is the sam

    Electronic structure of the strongly hybridized ferromagnet CeFe2

    Full text link
    We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200
    corecore