23 research outputs found

    Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney.

    Get PDF
    BackgroundExcess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout.MethodssUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity.ResultsAfter 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting.ConclusionThe pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout

    Absorption, Metabolism, and Excretion of [(14)C]Viramidine in Humans

    No full text
    Absorption, metabolism, and excretion of [(14)C]viramidine, a prodrug of ribavirin, were studied in humans following a single oral dose (600 mg). Viramidine was rapidly absorbed, with a time to maximum concentration of the drug in plasma of 1.5 h. Viramidine and ribavirin accounted for only 4.3% and 42% of plasma area under the concentration-time curve (AUC) for radioactivity, respectively, indicating extensive conversion of viramidine to ribavirin, followed by further metabolism of ribavirin. The drug was largely trapped in red blood cells (RBC), with an RBC-to-plasma radioactivity AUC(0-∞) ratio of 108. Excretion of total radioactivity in urine and feces accounted for 50.8% and 26.1% of the dose, respectively. The metabolic profile in urine (0 to 24 h) indicated that viramidine was excreted primarily as triazole carboxamide (TCONH(2)), triazole carboxylic acid nucleoside (TCOOH), and ribavirin with a small amount of unchanged viramidine, which each accounted for 64.1%, 17.0%, 15.7%, and 3.2% of urinary radioactivity, respectively. The amounts of unchanged viramidine (3.4% of dose) and ribavirin (10% of dose) in urine were small after oral administration of viramidine

    Pharmacokinetics and Metabolism of [(14)C]Viramidine in Rats and Cynomolgus Monkeys

    No full text
    The pharmacokinetics of [(14)C]viramidine, a prodrug of ribavirin, were studied in rats (30 mg/kg of body weight) and monkeys (10 mg/kg) following intravenous (i.v.) and oral administration. The levels of oral absorption and bioavailabilities were 61.7 and 9.91%, respectively, in rats and 43.9 and 13.6%, respectively, in monkeys. Following i.v. administration, the elimination half-lives were 2.7 h in rats and 28.9 h in monkeys. Total body clearances were 14.0 liters/h/kg in rats and 1.23 liters/h/kg in monkeys; the apparent volumes of distribution were 15.6 liters/kg in rats and 18.6 liters/kg in monkeys. Following oral administration, viramidine was extensively converted to ribavirin, followed by further metabolism of ribavirin in both species, with a faster rate of metabolism in rats than in monkeys. In rats, excretion of total radioactivity in urine accounted for 77.0% of the i.v. dose and 60.8% of the oral dose, while in monkeys it accounted for 44.4% of the i.v. dose and 39.0% of the oral dose. The amount of unchanged viramidine and ribavirin in urine was small in both species after i.v. and oral administration of viramidine

    Single-Dose Pharmacokinetics and Metabolism of [(14)C]Remofovir in Rats and Cynomolgus Monkeys

    No full text
    Single-dose pharmacokinetics and metabolism of [(14)C]remofovir was studied in rats and monkeys following intravenous (i.v.) and oral administration (30 mg/kg of body weight). Oral absorption and bioavailability were 29.7 and 5.42% in rats and 65.6 and 19.4% in monkeys, respectively. Following i.v. administration, the elimination half-life for remofovir was 0.7 h in both rats and monkeys. Total body clearance was 5.85 liters/h/kg in rats and 2.60 liters/h/kg in monkeys; apparent volume of distribution was 5.99 liters/kg in rats and 2.70 liters/kg in monkeys. Following oral administration, remofovir was extensively converted to 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and other metabolites in both species. In rats, excretion of total radioactivity in urine accounted for 61.8% of the i.v. dose and 12.9% of the oral dose, while in monkeys it accounted for 43.3% of the i.v. dose and 34.9% of the oral dose. Following i.v. dosing of [(14)C]remofovir, fecal excretion of radioactivity accounted for 37.5% of the dose in rats and 17.4% of the dose in monkeys, indicating significant biliary excretion of the drug in animals. PMEA and metabolite A were the major urinary metabolites in both species after i.v. and oral administration of remofovir

    Metabolic Activation of Pradefovir by CYP3A4 and Its Potential as an Inhibitor or Inducer

    No full text
    Metabolic activation of pradefovir to 9-(2-phosphonylmethoxyethyl)adenine (PMEA) was evaluated by using cDNA-expressed CYP isozymes in portal vein-cannulated rats following oral administration and in human liver microsomes. The enzyme induction potential of pradefovir was evaluated in rats following multiple oral dosing and in primary cultures of human hepatocytes. The results indicated that CYP3A4 is the only cDNA-expressed CYP isozyme catalyzing the conversion of pradefovir to PMEA. Pradefovir was converted to PMEA in human liver microsomes with a K(m) of 60 μM, a maximum rate of metabolism of 228 pmol/min/mg protein, and an intrinsic clearance of about 359 ml/min. Addition of ketoconazole and monoclonal antibody 3A4 significantly inhibits the conversion of pradefovir to PMEA in human liver microsomes, suggesting the predominant role of CYP3A4 in the metabolic activation of pradefovir. Pradefovir at 0.2, 2, and 20 μM was neither a direct inhibitor nor a mechanism-based inhibitor of CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP2E1, and CYP1A2 in human liver microsomes. In rats, the liver was the site of metabolic activation of pradefovir, whereas the small intestine did not play a significant role in the metabolic conversion of pradefovir to PMEA. Daily oral dosing (300 mg/kg of body weight) to rats for 8 days showed that pradefovir was not an inducer of P450 enzymes in rats. Furthermore, pradefovir at 10 μg/ml was not an inducer of either CYP1A2 or CYP3A4/5 in primary cultures of human hepatocytes

    Pharmacokinetics and Metabolism of [(14)C]Ribavirin in Rats and Cynomolgus Monkeys

    No full text
    Absorption, pharmacokinetics, distribution, metabolism, and excretion of [(14)C]ribavirin were studied in rats (30 mg/kg of body weight) and cynomolgus monkeys (10 mg/kg) after intravenous (i.v.) and oral administration. The oral absorption and bioavailability were 83 and 59%, respectively, in rats and 87 and 55%, respectively, in monkeys. After i.v. administration, the elimination half-life (t([1/2])) was 9.9 h in rats and 130 h in monkeys and the total body clearance was 2,600 ml/h/kg in rats and 224 ml/h/kg in monkeys. The apparent volume of distribution was 11.4 liter/kg in rats and 29.4 liter/kg in monkeys. There was extensive distribution of drug-derived radioactivity into red blood cells and extensive metabolism of ribavirin in rats and a lesser degree of metabolism in monkeys. Excretion of total radioactivity in urine from rats accounted for 84% of the i.v. dose and 83% of the oral dose, whereas that from monkeys accounted for 47% of the i.v. dose and 67% of the oral dose. Several metabolites were observed in plasma and urine from both species. The amount of unchanged ribavirin in urine from both species was quite small after either i.v. or oral administration

    A Novel Nonnucleoside Analogue That Inhibits Human Immunodeficiency Virus Type 1 Isolates Resistant to Current Nonnucleoside Reverse Transcriptase Inhibitors

    No full text
    Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. However, their low genetic barriers against resistance development, cross-resistance, and serious side effects can compromise the benefits of the two current drugs in this class (efavirenz and nevirapine). In this study, we report a novel and potent NNRTI, VRX-480773, that inhibits viruses from efavirenz-resistant molecular clones and most NNRTI-resistant clinical HIV-1 isolates tested. In vitro mutation selection experiments revealed that longer times were required for viruses to develop resistance to VRX-480773 than to efavirenz. RT mutations selected by VRX-480773 after 3 months of cell culture in the presence of 1 nM VRX-480773 carried the Y181C mutation, resulting in a less-than-twofold increase in resistance to the compound. A virus containing the double mutation V106I-Y181C emerged after 4 months, causing a sixfold increase in resistance. Viruses containing additional mutations of D123G, F227L, and T369I emerged when the cultures were incubated with increasing concentrations of VRX-480773. Most of the resistant viruses selected by VRX-480773 are susceptible to efavirenz. Oral administration of VRX-480773 to dogs resulted in plasma concentrations that were significantly higher than those required for the inhibition of wild-type and mutant viruses. These results warrant further clinical development of VRX-480773 for the treatment of HIV infection in both NNRTI-naive and -experienced patients

    Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney.

    No full text
    BackgroundExcess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout.MethodssUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity.ResultsAfter 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting.ConclusionThe pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout
    corecore