81 research outputs found

    Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: a repeated-measures study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies using administrative data report a positive association between ambient air pollution and the risk of hospitalization for congestive heart failure (HF). Circulating levels of B-type natriuretic peptide (BNP) are directly associated with cardiac hemodynamics and symptom severity in patients with HF and, therefore, serves as a marker of functional status. We tested the hypothesis that BNP levels would be positively associated with short-term changes in ambient pollution levels among 28 patients with chronic stable HF and impaired systolic function.</p> <p>Methods</p> <p>BNP was measured in whole blood at 0, 6, and 12 weeks. We used linear mixed models to evaluate the association between fine particulate matter (PM<sub>2.5</sub>), carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and black carbon and log(BNP). Lags of 0 to 3 days were considered in separate models. We calculated the intraclass correlation coefficient and within-subject coefficient of variation as measures of reproducibility.</p> <p>Results</p> <p>We found no association between any pollutant and measures of BNP at any lag. For example, a 10 μg/m<sup>3 </sup>increase in PM<sub>2.5 </sub>was associated with a 0.8% (95% CI: -16.4, 21.5; p = 0.94) increase in BNP on the same day. The within-subject coefficient of variation was 45% on the natural scale and 9% on the log scale.</p> <p>Conclusion</p> <p>These results suggest that serial BNP measurements are unlikely to be useful in a longitudinal study of air pollution-related acute health effects. The magnitude of expected ambient air pollution health effects appears small in relation to the considerable within-person variability in BNP levels in this population.</p

    Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial

    Get PDF
    Background: Tai Chi (TC) is a mind-body exercise that shows potential as an effective and safe intervention for preventing fall-related fractures in the elderly. Few randomized trials have simultaneously evaluated TC's potential to reduce bone loss and improve fall-predictive balance parameters in osteopenic women. Methods: In a pragmatic randomized trial, 86 post-menopausal osteopenic women, aged 45-70, were recruited from community clinics. Women were assigned to either nine months of TC training plus usual care (UC) vs. UC alone. Primary outcomes were changes between baseline and nine months of bone mineral density (BMD) of the proximal femur and lumbar spine (dual-energy X-ray absorptiometry) and serum markers of bone resorption and formation. Secondary outcomes included quality of life. In a subsample (n = 16), quiet standing fall-predictive sway parameters and clinical balance tests were also assessed. Both intent-to-treat and per-protocol analyses were employed. Results: For BMD, no intent-to-treat analyses were statistically significant; however, per protocol analyses (i.e., only including TC participants who completed \geq 75% training requirements) of femoral neck BMD changes were significantly different between TC and UC (+0.04 vs. -0.98%; P = 0.05). Changes in bone formation markers and physical domains of quality of life were also more favorable in per protocol TC vs. UC (P = 0.05). Changes in sway parameters were significantly improved by TC vs. UC (average sway velocity, P = 0.027; anterior-posterior sway range, P = 0.014). Clinical measures of balance and function showed non-significant trends in favor of TC. Conclusions: TC training offered through existing community-based programs is a safe, feasible, and promising intervention for reducing multiple fracture risks. Our results affirm the value of a more definitive, longer-term trial of TC for osteopenic women, adequately powered to detect clinically relevant effects of TC on attenuation of BMD loss and reduction of fall risk in this population

    Tai Chi for osteopenic women: design and rationale of a pragmatic randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-menopausal osteopenic women are at increased risk for skeletal fractures. Current osteopenia treatment guidelines include exercise, however, optimal exercise regimens for attenuating bone mineral density (BMD) loss, or for addressing other fracture-related risk factors (e.g. poor balance, decreased muscle strength) are not well-defined. Tai Chi is an increasingly popular weight bearing mind-body exercise that has been reported to positively impact BMD dynamics and improve postural control, however, current evidence is inconclusive. This study will determine the effectiveness of Tai Chi in reducing rates of bone turnover in post-menopausal osteopenic women, compared with standard care, and will preliminarily explore biomechanical processes that might inform how Tai Chi impacts BMD and associated fracture risks.</p> <p>Methods/Design</p> <p>A total of 86 post-menopausal women, aged 45-70y, T-score of the hip and/or spine -1.0 and -2.5, have been recruited from primary care clinics of a large healthcare system based in Boston. They have been randomized to a group-based 9-month Tai Chi program plus standard care or to standard care only. A unique aspect of this trial is its pragmatic design, which allows participants randomized to Tai Chi to choose from a pre-screened list of community-based Tai Chi programs. Interviewers masked to participants' treatment group assess outcomes at baseline and 3 and 9 months after randomization. Primary outcomes are serum markers of bone resorption (C-terminal cross linking telopeptide of type I collagen), bone formation (osteocalcin), and BMD of the lumbar spine and proximal femur (dual-energy X-ray absorptiometry). Secondary outcomes include health-related quality-of-life, exercise behavior, and psychological well-being. In addition, kinetic and kinematic characterization of gait, standing, and rising from a chair are assessed in subset of participants (n = 16) to explore the feasibility of modeling skeletal mechanical loads and postural control as mediators of fracture risk.</p> <p>Discussion</p> <p>Results of this study will provide preliminary evidence regarding the value of Tai Chi as an intervention for decreasing fracture risk in osteopenic women. They will also inform the feasibility, value and potential limitations related to the use of pragmatic designs for the study of Tai Chi and related mind-body exercise. If the results are positive, this will help focus future, more in-depth, research on the most promising potential mechanisms of action identified by this study.</p> <p>Trial registration</p> <p>This trial is registered in Clinical Trials.gov, with the ID number of NCT01039012.</p

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
    corecore