14 research outputs found
A Mutual Multi-Scale Triplet Graph Convolutional Network for Classification of Brain Disorders Using Functional or Structural Connectivity
Brain connectivity alterations associated with mental disorders have been widely reported in both functional MRI (fMRI) and diffusion MRI (dMRI). However, extracting useful information from the vast amount of information afforded by brain networks remains a great challenge. Capturing network topology, graph convolutional networks (GCNs) have demonstrated to be superior in learning network representations tailored for identifying specific brain disorders. Existing graph construction techniques generally rely on a specific brain parcellation to define regions-of-interest (ROIs) to construct networks, often limiting the analysis into a single spatial scale. In addition, most methods focus on the pairwise relationships between the ROIs and ignore high-order associations between subjects. In this letter, we propose a mutual multi-scale triplet graph convolutional network (MMTGCN) to analyze functional and structural connectivity for brain disorder diagnosis. We first employ several templates with different scales of ROI parcellation to construct coarse-to-fine brain connectivity networks for each subject. Then, a triplet GCN (TGCN) module is developed to learn functional/structural representations of brain connectivity networks at each scale, with the triplet relationship among subjects explicitly incorporated into the learning process. Finally, we propose a template mutual learning strategy to train different scale TGCNs collaboratively for disease classification. Experimental results on 1,160 subjects from three datasets with fMRI or dMRI data demonstrate that our MMTGCN outperforms several state-of-the-art methods in identifying three types of brain disorders
Characterization of Lenticulostriate Arteries and Its Associations With Vascular Risk Factors in Community-Dwelling Elderly
Lenticulostriate arteries (LSAs) supply blood to important subcortical areas and are, therefore, essential for maintaining the optimal functioning of the brain’s most metabolically active nuclei. Past studies have demonstrated the potential for quantifying the morphology of LSAs as biomarkers of vascular fragility or underlying arteriopathies. Thus, the current study aims to evaluate the morphological features of LSAs, their potential value in cerebrovascular risk stratification, and their concordance with other vascular risk factors in community-dwelling elderly people. A total of 125 community-dwelling elderly subjects who underwent a brain MRI scan were selected from our prospectively collected imaging database. The morphological measures of LSAs were calculated on the vascular skeletons obtained by manual tracing, and the number of LSAs was counted. Additionally, imaging biomarkers of small vessel disease were evaluated, and the diameters of major cerebral arteries were measured. The effects of vascular risk factors on LSA morphometry, as well as the relationship between LSA measures and other imaging biomarkers, were investigated. We found that smokers had shorter (p = 0.04) and straighter LSAs (p < 0.01) compared to nonsmokers, and the presence of hypertension is associated with less tortuous LSAs (p = 0.03) in community-dwelling elderly. Moreover, the middle cerebral artery diameter was positively correlated with LSA count (r = 0.278, p = 0.025) and vessel tortuosity (r = 0.257, p = 0.04). The posterior cerebral artery diameter was positively correlated with vessel tortuosity and vessel length. Considering the scarcity of noninvasive methods for measuring small artery abnormalities in the brain, the LSA morphological measures may provide valuable information to better understand cerebral small vessel degeneration during aging
Decreased Bilateral FDG-PET Uptake and Inter-Hemispheric Connectivity in Multi-Domain Amnestic Mild Cognitive Impairment Patients: A Preliminary Study
Background: Amnestic mild cognitive impairment (aMCI) is a heterogeneous condition. Based on clinical symptoms, aMCI could be categorized into single-domain aMCI (SD-aMCI, only memory deficit) and multi-domain aMCI (MD-aMCI, one or more cognitive domain deficit). As core intrinsic functional architecture, inter-hemispheric connectivity maintains many cognitive abilities. However, few studies investigated whether SD-aMCI and MD-aMCI have different inter-hemispheric connectivity pattern.Methods: We evaluated inter-hemispheric connection pattern using fluorine-18 positron emission tomography – fluorodeoxyglucose (18F PET-FDG), resting-state functional MRI and structural T1 in 49 controls, 32 SD-aMCI, and 32 MD-aMCI patients. Specifically, we analyzed the 18F PET-FDG (intensity normalized by cerebellar vermis) in a voxel-wise manner. Then, we estimated inter-hemispheric functional and structural connectivity by calculating the voxel-mirrored homotopic connectivity (VMHC) and corpus callosum (CC) subregions volume. Further, we correlated inter-hemispheric indices with the behavioral score and pathological biomarkers.Results: We found that MD-aMCI exhibited more several inter-hemispheric connectivity damages than SD-aMCI. Specifically, MD-aMCI displayed hypometabolism in the bilateral middle temporal gyrus (MTG), inferior parietal lobe, and left precuneus (PCu) (p < 0.001, corrected). Correspondingly, MD-aMCI showed decreased VMHC in MTG, PCu, calcarine gyrus, and postcentral gyrus, as well as smaller mid-posterior CC than the SD-aMCI and controls (p < 0.05, corrected). Contrary to MD-aMCI, there were no neuroimaging indices with significant differences between SD-aMCI and controls, except reduced hypometabolism in bilateral MTG. Within aMCI patients, hypometabolism and reduced inter-hemispheric connectivity correlated with worse executive ability. Moreover, hypometabolism indices correlated to increased amyloid deposition.Conclusion: In conclusion, patients with MD-aMCI exhibited the more severe deficit in inter-hemispheric communication than SD-aMCI. This long-range connectivity deficit may contribute to cognitive profiles and potentially serve as a biomarker to estimate disease progression of aMCI patients
Changes in the Corticospinal Tract Beyond the Ischemic Lesion Following Acute Hemispheric Stroke: A Diffusion Kurtosis Imaging Study.
BACKGROUND: The degeneration of the corticospinal tract (CST) in chronic stroke has been widely described using diffusion tensor imaging and correlates with the extent of motor deficits. However, only a few studies have reported the early degeneration in the distal CST during the acute stage of stroke and pathological changes in the distal CST have not been described.
PURPOSE: To study the microstructural changes along the CST beyond the ischemic lesion in acute stroke using diffusion kurtosis imaging (DKI).
STUDY TYPE: Prospective.
POPULATION: In all, 48 patients (26 males, 22 females; mean age 58.27 ± 12.89 years) with acute ischemic stroke.
SEQUENCE: A DKI sequence with three b-values (0, 1000, and 2000 s/mm(2) ) at 3.0T MRI.
ASSESSMENT: The kurtosis and tensor parameters were derived from DKI and were compared along the length of the CST beyond the ischemic lesion between the affected and unaffected hemispheres using both voxelwise and slicewise analysis. The degree of neurological deficits was evaluated using the National Institute of Health Stroke Score (NIHSS) and the Barthel index and the clinical outcome at 3 months was evaluated using a modified Rankin scale.
STATISTICAL TESTS: Paired t-tests, a linear mixed model, and multivariate linear regression.
RESULTS: Voxelwise analysis demonstrated increased mean kurtosis, increased axial kurtosis, and decreased axial diffusivity in the affected CST, which were seen only at the level of the cerebral peduncle (all corrected P \u3c 0.05). Slicewise analysis also demonstrated increased axial kurtosis in the cerebral peduncle of the affected CST (corrected P \u3c 0.05). The axial kurtosis from slicewise analysis independently correlated with the motor component of NIHSS (β = 0.297, P = 0.040).
DATA CONCLUSION: Our findings suggest that early anterograde degeneration occurs along the axon direction in the distal CST in acute stroke, and can be detected using DKI. Moreover, acute axonal degeneration along the CST correlated with motor deficits.
LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1
Current coffee consumption is associated with decreased striatal dopamine transporter availability in Parkinson’s disease patients and healthy controls
Abstract Background Coffee is the most widely consumed psychostimulant worldwide. Emerging evidence indicates that coffee consumption habit significantly reduces the risk of developing Parkinson’s disease (PD). However, the effect of coffee consumption on nigrostriatal dopaminergic neurodegeneration is still largely unknown. We therefore aim to investigate the role of coffee consumption in nigrostriatal dopaminergic neurodegeneration using dopamine transporter (DAT) imaging in PD and healthy controls (HC). Methods A total of 138 PD patients and 75 HC with questionnaires about coffee consumption, and DAT scans were recruited from the Parkinson’s Progression Markers Initiative cohort. Demographic, clinical, and striatal DAT characteristics were compared across subgroups of current, former, and never coffee consumers in PD and HC, respectively. Furthermore, partial correlation analyses were performed to determine whether there was a relationship between coffee cups consumed per day and striatal DAT characteristics in each striatal region. In addition, the factors that may have influenced the loss of nigrostriatal dopaminergic neurons were included in multiple linear regression analyses to identify significant contributing factors to DAT availability in each striatal region. Results PD patients had lower DAT availability in each striatal region than HC (p < 0.001). In PD patients, there were significant differences in DAT availability in the caudate (p = 0.008, Bonferroni corrected) across three PD subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.01) and never coffee consumers (p = 0.022). In HC, there were significant differences in DAT availability in the caudate (p = 0.031, Bonferroni uncorrected) across three HC subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.022). Moreover, correlation analysis revealed that cups per day were negatively correlated with DAT availability in the caudate in current consumers of PD patients (r =  − 0.219, p = 0.047). In addition, multiple linear regression analyses showed that current coffee consumption remained an independent predictor of decreased DAT availability in the caudate in PD patients and HC. Conclusions This study demonstrates that current coffee consumption is associated with decreased striatal DAT availability in the caudate. However, the effects of caffeine on striatal DAT may fade and disappear after quitting coffee consumption. Trial registration ClinicalTrials.gov, NCT01141023
Abnormal corpus callosum induced by diabetes impairs sensorimotor connectivity in patients after acute stroke
OBJECTIVES: To test the hypothesis that abnormal corpus callosum (CC) induced by diabetes may impair inter-hemispheric sensorimotor functional connectivity (FC) that is associated with poor clinical outcome after stroke.
METHODS: Forty-five patients with acute ischaemic stroke in the middle cerebral artery territory and 14 normal controls participated in the study. CC was divided into five subregions on three-dimensional T1-weighted image. The microstructural integrity of each subregion of CC was analysed by DTI and the inter-hemispheric FCs in primary motor cortex (M1-M1 FC) and primary sensory cortex (S1-S1 FC) were examined by resting-state functional magnetic resonance imaging.
RESULTS: Diabetic patients (n = 26) had significantly lower fractional anisotropy (FA) in the isthmus of CC (CC
CONCLUSIONS: CC degeneration induced by diabetes impairs sensorimotor connectivity and dysfunction of motor connectivity can contribute to poor recovery after stroke in patients with diabetes.
KEY POINTS: • Abnormal isthmus of corpus callosum in stroke patients with diabetes. • Abnormal isthmus of corpus callosum correlated with decreased inter-hemispheric sensorimotor connectivity. • Decreased motor connectivity correlated with poor stroke outcome in diabetic patients
Aberrant functional connectivity network in subjective memory complaint individuals relates to pathological biomarkers
Abstract Background Individuals with subjective memory complaints (SMC) feature a higher risk of cognitive decline and clinical progression of Alzheimer’s disease (AD). However, the pathological mechanism underlying SMC remains unclear. We aimed to assess the intrinsic connectivity network and its relationship with AD-related pathologies in SMC individuals. Methods We included 44 SMC individuals and 40 normal controls who underwent both resting-state functional MRI and positron emission tomography (PET). Based on graph theory approaches, we detected local and global functional connectivity across the whole brain by using degree centrality (DC) and eigenvector centrality (EC) respectively. Additionally, we analyzed amyloid deposition and tauopathy via florbetapir-PET imaging and cerebrospinal fluid (CSF) data. The voxel-wise two-sample T-test analysis was used to examine between-group differences in the intrinsic functional network and cerebral amyloid deposition. Then, we correlated these network metrics with pathological results. Results The SMC individuals showed higher DC in the bilateral hippocampus (HP) and left fusiform gyrus and lower DC in the inferior parietal region than controls. Across all subjects, the DC of the bilateral HP and left fusiform gyrus was positively associated with total tau and phosphorylated tau181. However, no significant between-group difference existed in EC and cerebral amyloid deposition. Conclusion We found impaired local, but not global, intrinsic connectivity networks in SMC individuals. Given the relationships between DC value and tau level, we hypothesized that functional changes in SMC individuals might relate to pathological biomarkers
Presentation_1_Decreased Bilateral FDG-PET Uptake and Inter-Hemispheric Connectivity in Multi-Domain Amnestic Mild Cognitive Impairment Patients: A Preliminary Study.PDF
<p>Background: Amnestic mild cognitive impairment (aMCI) is a heterogeneous condition. Based on clinical symptoms, aMCI could be categorized into single-domain aMCI (SD-aMCI, only memory deficit) and multi-domain aMCI (MD-aMCI, one or more cognitive domain deficit). As core intrinsic functional architecture, inter-hemispheric connectivity maintains many cognitive abilities. However, few studies investigated whether SD-aMCI and MD-aMCI have different inter-hemispheric connectivity pattern.</p><p>Methods: We evaluated inter-hemispheric connection pattern using fluorine-18 positron emission tomography – fluorodeoxyglucose (<sup>18</sup>F PET-FDG), resting-state functional MRI and structural T1 in 49 controls, 32 SD-aMCI, and 32 MD-aMCI patients. Specifically, we analyzed the 18<sup>F</sup> PET-FDG (intensity normalized by cerebellar vermis) in a voxel-wise manner. Then, we estimated inter-hemispheric functional and structural connectivity by calculating the voxel-mirrored homotopic connectivity (VMHC) and corpus callosum (CC) subregions volume. Further, we correlated inter-hemispheric indices with the behavioral score and pathological biomarkers.</p><p>Results: We found that MD-aMCI exhibited more several inter-hemispheric connectivity damages than SD-aMCI. Specifically, MD-aMCI displayed hypometabolism in the bilateral middle temporal gyrus (MTG), inferior parietal lobe, and left precuneus (PCu) (p < 0.001, corrected). Correspondingly, MD-aMCI showed decreased VMHC in MTG, PCu, calcarine gyrus, and postcentral gyrus, as well as smaller mid-posterior CC than the SD-aMCI and controls (p < 0.05, corrected). Contrary to MD-aMCI, there were no neuroimaging indices with significant differences between SD-aMCI and controls, except reduced hypometabolism in bilateral MTG. Within aMCI patients, hypometabolism and reduced inter-hemispheric connectivity correlated with worse executive ability. Moreover, hypometabolism indices correlated to increased amyloid deposition.</p><p>Conclusion: In conclusion, patients with MD-aMCI exhibited the more severe deficit in inter-hemispheric communication than SD-aMCI. This long-range connectivity deficit may contribute to cognitive profiles and potentially serve as a biomarker to estimate disease progression of aMCI patients.</p