185 research outputs found
The propagator for the step potential using the path decomposition expansion
We present a direct path integral derivation of the propagator in the
presence of a step potential. The derivation makes use of the Path
Decomposition Expansion (PDX), and also of the definition of the propagator as
a limit of lattice paths.Comment: To appear in DICE 2008 conference proceeding
On the Relationship Between Complex Potentials and Strings of Projection Operators
It is of interest in a variety of contexts, and in particular in the arrival
time problem, to consider the quantum state obtained through unitary evolution
of an initial state regularly interspersed with periodic projections onto the
positive -axis (pulsed measurements). Echanobe, del Campo and Muga have
given a compelling but heuristic argument that the state thus obtained is
approximately equivalent to the state obtained by evolving in the presence of a
certain complex potential of step-function form. In this paper, with the help
of the path decomposition expansion of the associated propagators, we give a
detailed derivation of this approximate equivalence. The propagator for the
complex potential is known so the bulk of the derivation consists of an
approximate evaluation of the propagator for the free particle interspersed
with periodic position projections. This approximate equivalence may be used to
show that to produce significant reflection, the projections must act at time
spacing less than 1/E, where E is the energy scale of the initial state.Comment: 29 pages, LaTex, 4 figures. Substantial revision
Recommended from our members
Challenging the classical notion of time in cognition: a quantum perspective
All mental representations change with time. A baseline intuition is that mental representations have specific values at different time points, which may be more or less accessible, depending on noise, forgetting processes etc. We present a radically alternative, motivated by recent research using the mathematics from quantum theory for cognitive modelling. Such cognitive models raise the possibility that certain possibilities or events may be incompatible, so that perfect knowledge of one necessitates uncertainty for the others. In the context of time dependence, in physics, this issue is explored with the so-called temporal Bell (TB) or Leggett-Garg inequalities. We consider in detail the theoretical and empirical challenges involved in exploring the TB inequalities in the context of cognitive systems. One interesting conclusion is that we believe the study of the TB inequalities to be empirically more constrained in psychology, than in physics. Specifically, we show how the TB inequalities, as applied to cognitive systems, can be derived from two simple assumptions, Cognitive Realism and Cognitive Completeness. We discuss possible implications of putative violations of the TB inequalities for cognitive models and our understanding of time in cognition in general. Overall, the paper provides a surprising, novel direction, in relation to how time should be conceptualized in cognition
Recommended from our members
Dissociating visuo-spatial and verbal working memory: It’s all in the features
Echoing many of the themes of the seminal work of Atkinson and Shiffrin (1968), this paper uses the Feature Model (Nairne, 1988, 1990; Neath & Nairne, 1995) to account for performance in working memory tasks. The Brooks verbal and visuo-spatial matrix tasks were performed alone, with articulatory suppression, or with a spatial suppression task; the results produced the expected dissociation. We used Approximate Bayesian Computation techniques to fit the Feature Model to the data and showed that the similarity-based interference process implemented in the model accounted for the data patterns well. We then fit the model to data from Guérard and Tremblay (2008); the latter study produced a double dissociation while calling upon more typical order reconstruction tasks. Again, the model performed well. The findings show that a double dissociation can be modelled without appealing to separate systems for verbal and visuo-spatial processing. The latter findings are significant as the Feature Model had not been used to model this type of dissociation before; importantly, this is also the first time the model is quantitatively fit to data. For the demonstration provided here, modularity was unnecessary if two assumptions were made: (1) the main difference between spatial and verbal working memory tasks is the features that are encoded; (2) secondary tasks selectively interfere with primary tasks to the extent that both tasks involve similar features. It is argued that a feature-based view is more parsimonious (see Morey, 2018) and offers flexibility in accounting for multiple benchmark effects in the field
Analytic Examples, Measurement Models and Classical Limit of Quantum Backflow
We investigate the backflow effect in elementary quantum mechanics - the
phenomenon in which a state consisting entirely of positive momenta may have
negative current and the probability flows in the opposite direction to the
momentum. We compute the current and flux for states consisting of
superpositions of gaussian wave packets. These are experimentally realizable
but the amount of backflow is small. Inspired by the numerical results of Penz
et al (M.Penz, G.Gr\"ubl, S.Kreidl and P.Wagner, J.Phys. A39, 423 (2006)), we
find two non-trivial wave functions whose current at any time may be computed
analytically and which have periods of significant backflow, in one case with a
backwards flux equal to about 70 percent of the maximum possible backflow, a
dimensionless number , discovered by Bracken and Melloy
(A.J.Bracken and G.F.Melloy, J.Phys. A27, 2197 (1994)). This number has the
unusual property of being independent of (and also of all other
parameters of the model), despite corresponding to an obviously
quantum-mechanical effect, and we shed some light on this surprising property
by considering the classical limit of backflow. We discuss some specific
measurement models in which backflow may be identified in certain measurable
probabilities.Comment: 33 pages, 14 figures. Minor revisions. Published versio
- …