238 research outputs found

    Cellular Imaging of Visual Cortex Reveals the Spatial and Functional Organization of Spontaneous Activity

    Get PDF
    The cerebral cortex is never silent; even in primary sensory areas there is ongoing neural activity in the absence of sensory input. Correlations in spontaneous activity can provide clues about network structure, but it has been difficult to record from enough nearby neurons to sample these correlations well. We used in vivo two-photon calcium imaging to demonstrate sparse patterns of correlated spontaneous activity among groups of ∼150 simultaneously imaged cells. In cat visual cortex, correlations fell off sharply with distance, by 50% within ∼240 μm, but in the rat there was little dependence on spatial separation up to 400 μm. In both species, cells that responded best to visual contours of a specific orientation were spontaneously co-active, suggesting that functionally related cells are organized into distinct subnetworks. Although these subnetworks are clustered in the cat, they are intermingled in the rodent, arguing for specific connections within the local cortical network

    Validation and refinement of gene-regulatory pathways on a network of physical interactions

    Get PDF
    As genome-scale measurements lead to increasingly complex models of gene regulation, systematic approaches are needed to validate and refine these models. Towards this goal, we describe an automated procedure for prioritizing genetic perturbations in order to discriminate optimally between alternative models of a gene-regulatory network. Using this procedure, we evaluate 38 candidate regulatory networks in yeast and perform four high-priority gene knockout experiments. The refined networks support previously unknown regulatory mechanisms downstream of SOK2 and SWI4

    Improved efficiency of tocotrienol extraction from fresh and processed latex

    Get PDF
    Vitamin E, mainly in the form of tocotrienols, was extracted from Hevea brasiliensis latex with organic solvents. The content of tocotrienols and a small amount of tocopherols recovered from the latex was determined using high performance liquid chromatoghraphy (HPLC). Gas chromatoghraphy-mass spectrometry (GC-MS) confirmed the identities of the tocotrienols and tocopherols forms that were present. Gamma-tocotrienol was the most abundant form of vitamin E in Hevea latex. The yield of tocotrienols (339 ug/g of latex) was significantly increased by the use of the detergant Triton X-100 in the extraction procedure. This method improves the extraction efficiency by 83%. Through drying of the organic fraction using anhydrous magnesium sulphate following phase separation was also advantageous in the extraction procedure. On the other hand, the presence of ammonia in latex suspension reduced extraction efficiency. Vitamin E was also found in the waste serum generated from the processing of deproteinised natural rubber (DPNR). Although the yield vitamin from this source was relatively low, there is a potential to modify the processing procedure another value added end product i.e. latex vitamin E in addition to DPNR

    Quantitative Analysis of Immunoglobulin E Reactivity Profiles in Patients Allergic or Sensitized to Natural Rubber Latex (Hevea Brasiliensis)

    Get PDF
    Characterized native and recombinant Hevea brasiliensis (rHev b) natural rubber latex (NRL) allergens are available to assess patient allergen sensitization profiles. OBJECTIVE: Quantification of individual IgE responses to the spectrum of documented NRL allergens and evaluation of cross-reactive carbohydrate determinants (CCDs) for more definitive diagnosis. METHODS: Sera of 104 healthcare workers (HCW; 51 German, 21 Portuguese, 32 American), 31 spina bifida patients (SB; 11 German, 20 Portuguese) and 10 Portuguese with multiple surgeries (MS) were analysed for allergen-specific IgE antibody (sIgE) to NRL, single Hev b allergens and CCDs with ImmunoCAP technology. RESULTS: In all patient groups rHev b 5-sIgE concentrations were the most pronounced. Hev b 2, 5, 6.01 and 13 were identified as the major allergens in HCW and combined with Hev b 1 and Hev b 3 in SB. In MS Hev b 1 displayed an intermediate relevance. Different sIgE antibody levels to native Hevea brasiliensis (nHev b) 2 and rHev b 6.01 allowed discrimination of SB with clinical relevant latex allergy vs. those with latex sensitization. Sensitization profiles of German, Portuguese and American patients were equivalent. rHev b 5, 6.01 and nHev b 13 combined detected 100% of the latex-allergic HCW and 80.1% of the SB. Only 8.3% of the sera showed sIgE response to CCDs. CONCLUSIONS: Hev b 1, 2, 5, 6.01 and 13 were identified as the major Hev b allergens and they should be present in standardized latex extracts and in vitro allergosorbents. CCDs are only of minor relevance in patients with clinical relevant latex allergy. Component-resolved diagnostic analyses for latex allergy set the stage for an allergen-directed immunotherapy strateg

    Potential use of plasma focus radiation sources in superficial cancer therapy

    Get PDF
    The new multidisciplinary field of plasma medicine combines plasma physics, electrical engineering, life sciences and clinical medicine. Here we explore potential uses in medicine, most particularly cancer therapy, the plasma source being brought out of the field of industrial applications into the life sciences, the focus being on superficial cancer radiotherapy strategies. Existing radiotherapy practices for such cancers rely on the use of rather large facilities, most popularly the electron linear accelerator and X-ray tube-based devices. Conversely, a compact plasma radiation source can be housed in a relatively small space, there being considerable promise for such devices to produce the fluence requirements of radiotherapy for treatment of skin cancers. The present study of feasibility investigates the plasma focus device, with the emission produced by a single discharge shown to generate an X-ray dose of few tens of mGy. The X-ray dose is the integration of emission in the discharge durations of less than a μs, it is therefore possible using these devices to build up fractional irradiation dose through repetitive operation of the discharge system

    5-Fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells

    Get PDF
    Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment

    A Factor Graph Nested Effects Model To Identify Networks from Genetic Perturbations

    Get PDF
    Complex phenotypes such as the transformation of a normal population of cells into cancerous tissue result from a series of molecular triggers gone awry. We describe a method that searches for a genetic network consistent with expression changes observed under the knock-down of a set of genes that share a common role in the cell, such as a disease phenotype. The method extends the Nested Effects Model of Markowetz et al. (2005) by using a probabilistic factor graph to search for a network representing interactions among these silenced genes. The method also expands the network by attaching new genes at specific downstream points, providing candidates for subsequent perturbations to further characterize the pathway. We investigated an extension provided by the factor graph approach in which the model distinguishes between inhibitory and stimulatory interactions. We found that the extension yielded significant improvements in recovering the structure of simulated and Saccharomyces cerevisae networks. We applied the approach to discover a signaling network among genes involved in a human colon cancer cell invasiveness pathway. The method predicts several genes with new roles in the invasiveness process. We knocked down two genes identified by our approach and found that both knock-downs produce loss of invasive potential in a colon cancer cell line. Nested effects models may be a powerful tool for inferring regulatory connections and genes that operate in normal and disease-related processes

    Development of polymer-assisted nanoparticles and nanogels for cancer therapy: An update

    Get PDF
    With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article

    An integrated analysis of molecular aberrations in NCI-60 cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is a complex disease where various types of molecular aberrations drive the development and progression of malignancies. Large-scale screenings of multiple types of molecular aberrations (e.g., mutations, copy number variations, DNA methylations, gene expressions) become increasingly important in the prognosis and study of cancer. Consequently, a computational model integrating multiple types of information is essential for the analysis of the comprehensive data.</p> <p>Results</p> <p>We propose an integrated modeling framework to identify the statistical and putative causal relations of various molecular aberrations and gene expressions in cancer. To reduce spurious associations among the massive number of probed features, we sequentially applied three layers of logistic regression models with increasing complexity and uncertainty regarding the possible mechanisms connecting molecular aberrations and gene expressions. Layer 1 models associate gene expressions with the molecular aberrations on the same loci. Layer 2 models associate expressions with the aberrations on different loci but have known mechanistic links. Layer 3 models associate expressions with nonlocal aberrations which have unknown mechanistic links. We applied the layered models to the integrated datasets of NCI-60 cancer cell lines and validated the results with large-scale statistical analysis. Furthermore, we discovered/reaffirmed the following prominent links: (1)Protein expressions are generally consistent with mRNA expressions. (2)Several gene expressions are modulated by composite local aberrations. For instance, CDKN2A expressions are repressed by either frame-shift mutations or DNA methylations. (3)Amplification of chromosome 6q in leukemia elevates the expression of MYB, and the downstream targets of MYB on other chromosomes are up-regulated accordingly. (4)Amplification of chromosome 3p and hypo-methylation of PAX3 together elevate MITF expression in melanoma, which up-regulates the downstream targets of MITF. (5)Mutations of TP53 are negatively associated with its direct target genes.</p> <p>Conclusions</p> <p>The analysis results on NCI-60 data justify the utility of the layered models for the incoming flow of cancer genomic data. Experimental validations on selected prominent links and application of the layered modeling framework to other integrated datasets will be carried out subsequently.</p
    corecore