1,650 research outputs found

    Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Get PDF
    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found

    Electrochemical Studies of Redox Systems for Energy Storage

    Get PDF
    Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied

    Analysis of stability contributions of high dihedral V-tails

    Get PDF
    An investigation was undertaken to determine the effectiveness of four analytical methods (empirical, modified empirical, vortex-lattice, and an inviscid, three dimensional, potential flow, wing body program) to estimate the lateral and longitudinal static stability characteristics of an isolated V-tail wind tunnel model. The experimental tests were conducted in the V/STOL tunnel at a Mach number of 0.18. Angle-of-attack data were obtained from -12 deg to 8 deg at 0 deg sideslip. Sideslip sweeps from -5 deg to 10 deg were made at angles of attack of 4 deg, 0 deg and -4 deg. The V-tail dihedral angles were 45 deg, 50 deg, 55 deg, and 60 deg

    The (2k-1)-connected multigraphs with at most k-1 disjoint cycles

    Full text link
    In 1963, Corr\'adi and Hajnal proved that for all k≥1k \ge 1 and n≥3kn \ge 3k, every (simple) graph on n vertices with minimum degree at least 2k contains k disjoint cycles. The same year, Dirac described the 3-connected multigraphs not containing two disjoint cycles and asked the more general question: Which (2k-1)-connected multigraphs do not contain k disjoint cycles? Recently, the authors characterized the simple graphs G with minimum degree δ(G)≥2k−1\delta(G) \ge 2k-1 that do not contain k disjoint cycles. We use this result to answer Dirac's question in full.Comment: 7 pages, 2 figures. To appear in Combinatoric

    Wind tunnel investigation of an unpowered helicopter fuselage model with a V-type empennage

    Get PDF
    The applicability of a V-type empennage on an unpowered semiscale helicopter fuselage is considered as design criteria for improved directional control devices. Configuration changes included variations of V-tail dihedral angle, planform area, and incidence angle. Of the configurations tested, a V-tail with a dihedral angle of 55 deg, a total planform area of 0.244 sq cm, and an incidence angle of 5 deg most nearly match the trim and static stability of the baseline conventional empennage

    Theoretical analysis of aerodynamic characteristics of two helicopter rotor airfoils

    Get PDF
    An analytical study was conducted to predict the aerodynamic characteristics of two helicopter rotor airfoils. Documentation of the predictive process covers the development of empirical factors used in conjunction with computer programs for airfoil analysis. Tables of lift, drag, and pitching-moment coefficient for each airfoil were prepared for two dimensional, steady flow conditions at Mach numbers from 0.3 to 0.9 and Reynolds numbers of 7,700,000 to 23,000,000, respectively

    Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    Get PDF
    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C

    Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Get PDF
    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations

    Electromagnetic studies of redox systems for energy storage

    Get PDF
    Both chromium and iron couples were studied on various electrode surfaces in acidic perchlorate solution by using rotating ring-disk techniques. It was found that chloride which forms inner sphere coordination complexes with the redox species enhances the electrode kinetics dramatically. The effects of lead underpotential deposition and surface alloy formation on the kinetics of the chromium couple on gold were studied using both linear sweep voltammetry and potential step techniques. The lad underpotential deposition was found to slow down the kinetics of the reduction of the Cr species on gold surfaces although increase the hydrogen overvoltage. The effect on the chromium kinetics can be explained in terms of principally a double layer effect. The underpotential deposition lead species with its positive charge results in a decrease in the concentration of the Cr species at the electrode surface. Similar phenomena were also observed with bismuth underpotential deposition on gold for the iron couple
    • …
    corecore