14 research outputs found

    Dissipative superfluid mass flux through solid 4He

    Full text link
    The thermo-mechanical effect in superfluid helium is used to create an initial chemical potential difference, Δμ0\Delta \mu_0, across a solid 4^4He sample. This Δμ0\Delta \mu_0 causes a flow of helium atoms from one reservoir filled with superfluid helium, through a sample cell filled with solid helium, to another superfluid-filled reservoir until chemical potential equilibrium is restored. The solid helium sample is separated from each of the reservoirs by Vycor rods that allow only the superfluid component to flow. With an improved technique, measurements of the flow, FF, at several fixed solid helium temperatures, TT, have been made as function of Δμ\Delta \mu in the pressure range 25.5 - 26.1 bar. And, measurements of FF have been made as a function of temperature in the range 180<T<545180 < T < 545~mK for several fixed values of Δμ\Delta \mu. The temperature dependence of the flow above 100100~mK shows a reduction of the flux with an increase in temperature that is well described by F=F0[1aexp(E/T)]F = F_0^*[1 - a\exp(-E/T)]. The non-linear functional dependence F(Δμ)bF \sim (\Delta \mu)^b, with b<0.5b < 0.5 independent of temperature but dependent on pressure, documents in some detail the dissipative nature of the flow and suggests that this system demonstrates Luttinger liquid-like one-dimensional behavior. The mechanism that causes this flow behavior is not certain, but is consistent with superflow on the cores of edge dislocations.Comment: 11 pages, 14 figure

    Mass flux characteristics in solid 4He for T> 100 mK: Evidence for Bosonic Luttinger Liquid behavior

    Full text link
    At pressure \sim 25.7 bar the flux, FF, carried by solid \4he for T>T > 100 mK depends on the net chemical potential difference between two reservoirs in series with the solid, Δμ\Delta \mu, and obeys F(Δμ)bF \sim (\Delta \mu)^b, where b0.3b \approx 0.3 is independent of temperature. At fixed Δμ\Delta \mu the temperature dependence of the flux, FF, can be adequately represented by Fln(T/τ)F \sim - \ln(T/\tau), τ0.6\tau \approx 0.6 K, for 0.1T0.50.1 \leq T \leq 0.5 K. A single function F=F0(Δμ)bln(T/τ)F = F_0(\Delta \mu)^b\ln(T/\tau) fits all of the available data sets in the range 25.6 - 25.8 bar reasonably well. We suggest that the mass flux in solid \4he for T>100T > 100 mK may have a Luttinger liquid-like behavior in this bosonic system.Comment: 4 pages, 5 figure

    Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He

    Full text link
    The kinetics of HCP-BCC structure phase transition is studied by precise pressure measurement technique in 4He crystals of different quality. An anomalous pressure behavior in bad quality crystals under constant volume conditions is detected just after HCP-BCC structure phase transition. A sharp pressure drop of 0.2 bar was observed at constant temperature. The subsequent pressure kinetics is a non-monotonic temperature function. The effect observed can be explained if we suppose that microscopic liquid droplets appear on the HCP-BCC interphase region in bad quality crystals. After the interphase region disappearance, these droplets are crystallized with pressure reduction. It is shown that this effect is absent in high quality thermal-treated crystals.Comment: 4 pages, 4 figure

    Flux bottlenecks in the mass superflux in solid helium

    No full text

    Mass superflux in solid helium: The role of He

    No full text
    corecore