research

Dissipative superfluid mass flux through solid 4He

Abstract

The thermo-mechanical effect in superfluid helium is used to create an initial chemical potential difference, Δμ0\Delta \mu_0, across a solid 4^4He sample. This Δμ0\Delta \mu_0 causes a flow of helium atoms from one reservoir filled with superfluid helium, through a sample cell filled with solid helium, to another superfluid-filled reservoir until chemical potential equilibrium is restored. The solid helium sample is separated from each of the reservoirs by Vycor rods that allow only the superfluid component to flow. With an improved technique, measurements of the flow, FF, at several fixed solid helium temperatures, TT, have been made as function of Δμ\Delta \mu in the pressure range 25.5 - 26.1 bar. And, measurements of FF have been made as a function of temperature in the range 180<T<545180 < T < 545~mK for several fixed values of Δμ\Delta \mu. The temperature dependence of the flow above 100100~mK shows a reduction of the flux with an increase in temperature that is well described by F=F0[1aexp(E/T)]F = F_0^*[1 - a\exp(-E/T)]. The non-linear functional dependence F(Δμ)bF \sim (\Delta \mu)^b, with b<0.5b < 0.5 independent of temperature but dependent on pressure, documents in some detail the dissipative nature of the flow and suggests that this system demonstrates Luttinger liquid-like one-dimensional behavior. The mechanism that causes this flow behavior is not certain, but is consistent with superflow on the cores of edge dislocations.Comment: 11 pages, 14 figure

    Similar works