3,085 research outputs found

    Modified evolution of stellar binaries from supermassive black hole binaries

    Full text link
    The evolution of main sequence binaries resided in the galactic centre is influenced a lot by the central super massive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic center, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai(LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ~70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ~10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (>=40 degree) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.Comment: 12 pages, 9 figures, MNRAS in pres

    Negative feedback effects on star formation history and cosmic reionization

    Full text link
    After considering the effects of negative feedback on the process of star formation, we explore the relationship between star formation process and the associated feedback, by investigating how the mechanical feedback from supernovae(SNe) and radiative feedback from luminous objects regulate the star formation rate and therefore affect the cosmic reionization.Based on our present knowledge of the negative feedback theory and some numerical simulations, we construct an analytic model in the framework of the Lambda cold dark matter model. In certain parameter regions, our model can explain some observational results properly. In large halos(T_vir>10000 K), both mechanical and radiative feedback have a similar behavior: the relative strength of negative feedback reduces as the redshift decreases. In contrast, in small halos (T_vir<10000 K$) that are thought to breed the first stars at early time, the radiative feedback gets stronger when the redshift decreases. And the star formation rate in these small halos depends very weakly on the star-formation efficiency. Our results show that the radiative feedback is important for the early generation stars. It can suppress the star formation rate considerably. But the mechanical feedback from the SNe explosions is not able to affect the early star formation significantly. The early star formation in small-halo objects is likely to be self-regulated. The radiative and mechanical feedback dominates the star formation rate of the PopII/I stars all along. The feedback from first generation stars is very strong and should not be neglected. However, their effects on the cosmic reionization are not significant, which results in a small contribution to the optical depth of Thomson scattering.Comment: 12 pages,6 figure

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Correlation effects for semiconducting single wall carbon nanotube: a density matrix renormalization group study

    Full text link
    In this paper, we report the applicability of the density matrix renormalization group(DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for purpose of its correlation effect. By applying the DMRG approach to the tt+UU+VV model, with tt and VV being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and UU the onsite Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n1=3,n2=2n_{1}=3, n_{2}=2), which reflects the competition between the correlation energy UU and VV. Within reasonable parameter ranges, we investigate possible correlated groundstates, the lowest excitations and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.Comment: 1 source files, 5 figure

    Antecedents and Outcome of Information Sharing in Supply Chain

    Get PDF
    • …
    corecore