4,119 research outputs found

    The Primary Study on Evaluating Index System of Energy Efficient Buildings

    Get PDF
    In the standards and criterions of many countries, the evaluating index of energy efficient buildings mostly comprises of two types, prescriptive index and performance index. Firstly , the concepts of each type  were  explained  respectively  in  this paper , and  several  existed typical evaluating performance indexes and methods of energy2efficient buildings were introduced , also  the  characteristics of  each index were presented. Furthermore , the evaluating indexes and methods used by  existing  design  standards for  energy  efficiency  buildings  in  China were  briefly  discussed  and  some  elementary  suggestions  on  the foundation  of   evaluating  index  system  were  analyzed.   At  last ,  based  on the discussion , a suitable evaluating index system of energy efficient buildings for China could  be  established ,  as  a  result ,  the  energy  resources could  be  saved and the environment  could  be protected

    Long-frame-shift Neural Speech Phase Prediction with Spectral Continuity Enhancement and Interpolation Error Compensation

    Full text link
    Speech phase prediction, which is a significant research focus in the field of signal processing, aims to recover speech phase spectra from amplitude-related features. However, existing speech phase prediction methods are constrained to recovering phase spectra with short frame shifts, which are considerably smaller than the theoretical upper bound required for exact waveform reconstruction of short-time Fourier transform (STFT). To tackle this issue, we present a novel long-frame-shift neural speech phase prediction (LFS-NSPP) method which enables precise prediction of long-frame-shift phase spectra from long-frame-shift log amplitude spectra. The proposed method consists of three stages: interpolation, prediction and decimation. The short-frame-shift log amplitude spectra are first constructed from long-frame-shift ones through frequency-by-frequency interpolation to enhance the spectral continuity, and then employed to predict short-frame-shift phase spectra using an NSPP model, thereby compensating for interpolation errors. Ultimately, the long-frame-shift phase spectra are obtained from short-frame-shift ones through frame-by-frame decimation. Experimental results show that the proposed LFS-NSPP method can yield superior quality in predicting long-frame-shift phase spectra than the original NSPP model and other signal-processing-based phase estimation algorithms.Comment: Published at IEEE Signal Processing Letter

    Source-Filter-Based Generative Adversarial Neural Vocoder for High Fidelity Speech Synthesis

    Full text link
    This paper proposes a source-filter-based generative adversarial neural vocoder named SF-GAN, which achieves high-fidelity waveform generation from input acoustic features by introducing F0-based source excitation signals to a neural filter framework. The SF-GAN vocoder is composed of a source module and a resolution-wise conditional filter module and is trained based on generative adversarial strategies. The source module produces an excitation signal from the F0 information, then the resolution-wise convolutional filter module combines the excitation signal with processed acoustic features at various temporal resolutions and finally reconstructs the raw waveform. The experimental results show that our proposed SF-GAN vocoder outperforms the state-of-the-art HiFi-GAN and Fre-GAN in both analysis-synthesis (AS) and text-to-speech (TTS) tasks, and the synthesized speech quality of SF-GAN is comparable to the ground-truth audio.Comment: Accepted by NCMMSC 202

    Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

    Full text link
    Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network which explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by time-frequency Transformers along both time and frequency dimensions. The encoder aims to encode time-frequency representations derived from the input distorted magnitude and phase spectra. The decoder comprises dual-stream magnitude and phase decoders, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude estimation architecture and a phase parallel estimation architecture, respectively. To train the MP-SENet model effectively, we define multi-level loss functions, including mean square error and perceptual metric loss of magnitude spectra, anti-wrapping loss of phase spectra, as well as mean square error and consistency loss of short-time complex spectra. Experimental results demonstrate that our proposed MP-SENet excels in high-quality speech enhancement across multiple tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it successfully avoids the bidirectional compensation effect between the magnitude and phase, leading to a better harmonic restoration. Notably, for the speech denoising task, the MP-SENet yields a state-of-the-art performance with a PESQ of 3.60 on the public VoiceBank+DEMAND dataset.Comment: Submmited to IEEE Transactions on Audio, Speech and Language Processin

    2-(2-Chloro­pyrimidin-4-yl)-3,5,6,7,8,9-hexahydro-2H-1,2,4-triazolo[4,3-a]azepin-3-one

    Get PDF
    In the title compound, C11H12ClN5O, the triazolone and pyrimidine rings are almost coplanar [dihedral angle = 2.98 (14)°]. The total puckering amplitude QT of the seven-membered lactam ring is 0.706 (3) Å

    APNet2: High-quality and High-efficiency Neural Vocoder with Direct Prediction of Amplitude and Phase Spectra

    Full text link
    In our previous work, we proposed a neural vocoder called APNet, which directly predicts speech amplitude and phase spectra with a 5 ms frame shift in parallel from the input acoustic features, and then reconstructs the 16 kHz speech waveform using inverse short-time Fourier transform (ISTFT). APNet demonstrates the capability to generate synthesized speech of comparable quality to the HiFi-GAN vocoder but with a considerably improved inference speed. However, the performance of the APNet vocoder is constrained by the waveform sampling rate and spectral frame shift, limiting its practicality for high-quality speech synthesis. Therefore, this paper proposes an improved iteration of APNet, named APNet2. The proposed APNet2 vocoder adopts ConvNeXt v2 as the backbone network for amplitude and phase predictions, expecting to enhance the modeling capability. Additionally, we introduce a multi-resolution discriminator (MRD) into the GAN-based losses and optimize the form of certain losses. At a common configuration with a waveform sampling rate of 22.05 kHz and spectral frame shift of 256 points (i.e., approximately 11.6ms), our proposed APNet2 vocoder outperformed the original APNet and Vocos vocoders in terms of synthesized speech quality. The synthesized speech quality of APNet2 is also comparable to that of HiFi-GAN and iSTFTNet, while offering a significantly faster inference speed

    Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture
    corecore