2,613 research outputs found

    High-dimensional frequency conversion in hot atomic system

    Full text link
    One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) stems from the difference in ring diameter of COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency convertor for perfect optical vortex (POV) modes with invariant size through the four-wave mixing (FWM) process by utilizing Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 nm to 795 nm is independent of l at least in subspace of {-6,...,6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D and 7D superposition states with fidelities as high as 96.70%, 89.16% and 88.68%, respectively. The reported scheme is implemented in hot atomic vapor, it's also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication

    Detection of infrared light through stimulated four-wave mixing process

    Full text link
    Infrared optical measurement has a wide range of applications in industry and science, but infrared light detectors suffer from high costs and inferior performance than visible light detectors. Four-wave mixing (FWM) process allows detection in the infrared range by detecting correlated visible light. We experimentally investigate the stimulated FWM process in a hot 85^{85}Rb atomic vapor cell, in which a weak infrared signal laser at 1530 1530~nm induces the FWM process and is amplified and converted into a strong FWM light at 780 780~nm, the latter can be detected more easily. We find the optimized single- and two-photon detunings by studying the dependence of the frequency of input laser on the generated FWM light. What's more, the power gain increases rapidly as the signal intensity decreases, which is consistent with our theoretical analysis. As a result, the power gain can reach up to 500 at a signal laser power of 0.1 μ0.1~\muW and the number of detected photons increased by a factor of 250. Finally, we experimentally prove that our amplification process can work in a broad band in the frequency domain by exploring the response rate of our stimulated FWM process.Comment: 4 figure

    Optical Memory for Arbitrary Perfect Poincar\'e States in an Atomic Ensemble

    Full text link
    Inherent spin angular momentum (SAM) and orbital angular momentum (OAM) which manifest as polarization and spatial degrees of freedom (DOF) of photons, hold a promise of large capability for applications in classical and quantum information processing. To enable these photonic spin and orbital dynamic properties strongly coupled with each other, Poincar\'{e} states have been proposed and offer advantages in data multiplexing, information encryption, precision metrology, and quantum memory. However, since the transverse size of Laguerre Gaussian beams strongly depends on their topological charge numbers ∣l∣\left| l \right|, it is difficult to store asymmetric Poincar\'{e} states due to the significantly different light-matter interaction for distinct spatial modes. Here, we experimentally realize the storage of perfect Poincar\'{e} states with arbitrary OAM quanta using the perfect optical vortex, in which 121 arbitrarily-selected perfect Poincar\'{e} states have been stored with high fidelity. The reported work has great prospects in optical communication and quantum networks for dramatically increased encoding flexibility of information

    Flexible online task assignment in real-time spatial data

    Get PDF
    The popularity of Online To Offline (O2O) service platforms has spurred the need for online task assignment in real-time spatial data, where streams of spatially distributed tasks and workers are matched in real time such that the total number of assigned pairs is maximized. Existing online task assignment models assume that each worker is either assigned a task immediately or waits for a subsequent task at a fixed location once she/he appears on the platform. Yet in practice a worker may actively move around rather than passively wait in place if no task is assigned. In this paper, we define a new problem Flexible Two-sided Online task Assignment (FTOA). FTOA aims to guide idle workers based on the prediction of tasks and workers so as to increase the total number of assigned worker-task pairs. To address the FTOA problem, we face two challenges: (i) How to generate guidance for idle workers based on the prediction of the spatiotemporal distribution of tasks and workers? (ii) How to leverage the guidance of workers’ movements to optimize the online task assignment? To this end, we propose a novel two-step framework, which integrates offline prediction and online task assignment. Specifically, we estimate the distributions of tasks and workers per time slot and per unit area, and design an online task assignment algorithm, Prediction-oriented Online task Assignment in Real-time spatial data (POLAR-OP). It yields a 0.47-competitive ratio, which is nearly twice better than that of the state-of-the-art. POLAR-OP also reduces the time complexity to process each newly-arrived task/worker to O(1). We validate the effectiveness and efficiency of our methods via extensive experiments on both synthetic datasets and real-world datasets from a large-scale taxi-calling platform.ISSN:2150-809

    Experimental realization of quantum non-reciprocity based on cold atomic ensembles

    Full text link
    In analog to counterparts widely used in electronic circuits, all optical non-reciprocal devices are basic building blocks for both classical and quantum optical information processing. Approaching the fundamental limit of such devices, where the propagation of a single photon exhibits a good non-reciprocal characteristic, requires an asymmetric strong coupling between a single photon and a matter. Unfortunately it has been not realized yet. Here, we propose and experimentally realize a quantum non-reciprocity device with low optical losses and a high isolation of larger than 14 dB based on the cold atoms. Besides, the non-reciprocal transmission of a quantum qubit and non-reciprocal quantum storage of a true single photon are also realized. All results achieved would be very promising in building up quantum non-reciprocal devices for quantum networks.Comment: 7 pages, 4 figure

    Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling

    Get PDF
    TGF-β and related growth factors critically regulate cell potency and functions. Smad7 is induced by TGF-βs and inhibits the physiological functions of TGF-β signaling. This study describes an unexpected finding that Smad7 promotes self-renewal of embryonic stem cells (ESCs) in a manner independent of its inhibition on TGF-β signaling. Instead, Smad7 acts to induce activation of transcription factor signal transducers and activators of transcription 3 (STAT3) in ESCs. Smad7 activates STAT3 through its direct binding to the cytokine receptor upstream of STAT3 activation. In agreement with the role of STAT3 in maintaining ESC pluripotency, Smad7 promotes ESC self-renewal and induced pluripotent stem cell reprogramming. This finding illustrates a regulatory mechanism for Smad7 in maintaining pluripotency, and likely in cancer and inflammation
    • …
    corecore