2,821 research outputs found

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ϵ\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    Two improved algorithms for sparse generalized canonical correlation analysis

    Full text link
    Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables, which is a component-based approach aiming to study the relationships between several sets of variables. Sparse generalized canonical correlation analysis (SGCCA) (proposed in Tenenhaus et al. (2014)), combines RGCCA with an `1-penalty, in which blocks are not necessarily fully connected, makes SGCCA a flexible method for analyzing a wide variety of practical problems, such as biology, chemistry, sensory analysis, marketing, food research, etc. In Tenenhaus et al. (2014), an iterative algorithm for SGCCA was designed based on the solution to the subproblem (LM-P1 for short) of maximizing a linear function on the intersection of an `1-norm ball and a unit `2-norm sphere proposed in Witten et al. (2009). However, the solution to the subproblem (LM-P1) proposed in Witten et al. (2009) is not correct, which may become the reason that the iterative algorithm for SGCCA is slow and not always convergent. For this, we first characterize the solution to the subproblem LM-P1, and the subproblems LM-P2 and LM-P3, which maximize a linear function on the intersection of an `1-norm sphere and a unit `2-norm sphere, and an `1-norm ball and a unit `2-norm sphere, respectively. Then we provide more efficient block coordinate descent (BCD) algorithms for SGCCA and its two variants, called SGCCA-BCD1, SGCCA-BCD2 and SGCCA-BCD3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, prove that they all globally converge to their stationary points. We further propose gradient projected (GP) methods for SGCCA and its two variants when using the Horst scheme, called SGCCA-GP1, SGCCA-GP2 and SGCCA-GP3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, and prove that they al

    Supplementation of iron alone and combined with vitamins improves haematological status, erythrocyte membrane fluidity and oxidative stress in anaemic pregnant women

    Get PDF
    Pregnancy is a condition exhibiting increased susceptibility to oxidative stress, and Fe plays a central role in generating harmful oxygen species. The objective of the present study is to investigate the changes in haematological status, oxidative stress and erythrocyte membrane fluidity in anaemic pregnant women after Fe supplementation with and without combined vitamins. The study was a 2 months double-blind, randomised trial. Pregnant women (n 164) were allocated to four groups: group C was the placebo control group; group I was supplemented daily with 60 mg Fe (ferrous sulphate) daily; group IF was supplemented daily with Fe plus 400 µg folic acid; group IM was supplemented daily with Fe plus 2 mg retinol and 1 mg riboflavin, respectively. After the 2-month trial, Hb significantly increased by 15·8, 17·3 and 21·8 g/l, and ferritin by 2·8, 3·6 and 11·0 µg/l, in the I, IF and IM groups compared with placebo. Polarisation (¿) and microviscosity (¿) decreased significantly in other groups compared with placebo, indicating an increase in membrane fluidity. Significant decreases of ¿ and ¿ values compared with group C were 0·033 and 0·959 for group I, 0·037 and 1·074 for group IF and 0·064 and 1·865 for group IM, respectively. In addition, significant increases of glutathione peroxidase activities and decreases of malondialdehyde were shown in all treated groups, as well as increases of plasma retinol and urine riboflavin in group IM. The findings show that supplementation with Fe and particularly in combination with vitamins could improve the haematological status as well as oxidative stress and erythrocyte membrane fluidit

    Coffee: Cost-Effective Edge Caching for 360 Degree Live Video Streaming

    Full text link
    While live 360 degree video streaming delivers immersive viewing experience, it poses significant bandwidth and latency challenges for content delivery networks. Edge servers are expected to play an important role in facilitating live streaming of 360 degree videos. In this paper, we propose a novel predictive edge caching algorithm (Coffee) for live 360 degree video that employ collaborative FoV prediction and predictive tile prefetching to reduce bandwidth consumption, streaming cost and improve the streaming quality and robustness. Our light-weight caching algorithms exploit the unique tile consumption patterns of live 360 degree video streaming to achieve high tile caching gains. Through extensive experiments driven by real 360 degree video streaming traces, we demonstrate that edge caching algorithms specifically designed for live 360 degree video streaming can achieve high streaming cost savings with small edge cache space consumption. Coffee, guided by viewer FoV predictions, significantly reduces back-haul traffic up to 76% compared to state-of-the-art edge caching algorithms. Furthermore, we develop a transcoding-aware variant (TransCoffee) and evaluate it using comprehensive experiments, which demonstrate that TransCoffee can achieve 63\% lower cost compared to state-of-the-art transcoding-aware approaches
    corecore