31,626 research outputs found

    Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders

    Full text link
    In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional arrays of straight rigid cylinders placed parallelly in the air. Both periodic and completely random arrangements of the cylinders are considered. The results for the sound attenuation through the periodic arrays are shown to be in a remarkable agreement with the reported experimental data. As the arrangement of the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies. For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure

    How do top construction companies diversify in the international construction market?

    Get PDF
    This article won the Best Paper Award in the symposiumGlobalization has created an international market that allows construction companies transcend traditional national boundaries and conduct business overseas. With new opportunities being brought to contractors, competition also grows exponentially in this market. Diversification is frequently adopted by these contractors as a strategy by the contractors for either growth, or risk management, or both in this competitive environment. However, the pattern of diversification has not been well measured, mapped, and analyzed. The aim of this research is to develop a Diversify Index (DI) and examine international contractors’ diversification pattern. The data is from the Top 225 International Contractors’ reports ranked by ENR (Engineering News-Record) from 1995 to 2014. Distributions of the DI were explored first and then case studies were used to investigate the specific diversification strategies adopted by the top international contractors. It is discovered that a downward trend of DI with subsequent changes in rankings expresses that larger contractors increasingly adopt various diversification strategies in international competition. The results provide valuable sights on the relationship between the competitive success and their diversification strategies as well as the tendency of diversification strategies adopted by top international contractors in different regions.postprin

    Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum

    Full text link
    We compare the quantum and the classical description of the two-dimensional motion of electrons subjected to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consisting of superimposed branches of strong and of weak dispersion, by the correspondence between the respective eigenstates and the ``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review

    Diffuse Neutron Scattering Study of Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)

    Full text link
    Diffuse neutron scattering is a valuable tool to obtain information about the size and orientation of the polar nanoregions that are a characteristic feature of relaxor ferroelectrics. In this paper, we present new diffuse scattering results obtained on Pb(Zn1/3Nb2/3)O3 (PZN for short) and (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)single crystals (with x=4.5 and 9%), around various Bragg reflections and along three symmetry directions in the [100]-[011] zone. Diffuse scattering is observed around reflections with mixed indices, (100), (011) and (300), and along transverse and diagonal directions only. No diffuse scattering is found in longitudinal scans. The diffuse scattering peaks can be fitted well with a Lorentzian function, from which a correlation length is extracted. The correlation length increases with decreasing temperatures down to the transition at Tc, first following a Curie-Weiss law, then departing from it and becoming flat at very low temperatures. These results are interpreted in terms of three temperature regions: 1) dynamic polarization fluctuations (i.e. with a finite lifetime) at high temperatures, 2) static polarization reorientations (condensation of polar nanoregions) that can still reorient as a unit (relaxor behavior) at intermediate temperatures and 3) orientational freezing of the polar nanoregions with random strain fields in pure PZN or a structural phase transition in PZN-xPT at low temperatures. The addition of PT leads to a broadening of the diffuse scattering along the diagonal ([111]) relative to the transverse ([100]) direction, indicating a change in the orientation of the polar regions. Also, with the addition of PT, the polar nanoregions condense at a higher temperature above Tc.Comment: AIP 6x9 style files, 9 pages, 5 figures, Conference-Fundamental Physics of Ferroelectrics 200

    Systematic study of Optical Feshbach Resonances in an ideal gas

    Full text link
    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect in an ultracold gas of bosonic 88^{88}Sr. A systematic measurement of three resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve clarity. Extended supplementary material. 4 pages, 4 figures; includes supplementary material 8 pages, 4 figures. Submitted to Physical Review Letter

    Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    Full text link
    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line \lvert 5s^{2} \, ^1 \textrm{S}_0 \rangle \,-\, \lvert 5s5p \, ^3 \textrm{P}_1 \rangle at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynamics of the phase dispersion slope is experimentally investigated and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.Comment: 7 pages, 4 figure

    Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields

    Full text link
    We calculate the energy spectrum of an electron moving in a two-dimensional lattice which is defined by an electric potential and an applied perpendicular magnetic field modulated by a periodic surface magnetization. The spatial direction of this magnetization introduces complex phases into the Fourier coefficients of the magnetic field. We investigate the effect of the relative phases between electric and magnetic modulation on band width and internal structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
    • …
    corecore