164 research outputs found

    Alzheimer Disease is Associated with Isotropic Ocular Enlargement

    Full text link
    Recent studies have documented ocular changes in dementia patients, especially Alzheimer Disease (AD). In this study, we explored the change of eye size and eye shape in dementia, including AD patients. The eyeball volume and diameters were estimated via T1-weighted brain magnetic resonance (MR) images in the OASIS-3 database which included 83 AD, 247 non-AD dementiaand 336 normal-aging participants qualified for this study. After adjustment of age, sex, race, apolipoprotein E genotypes, anisotropic ratio and intracranial volume, we observed the eyeball volume of the AD group was significantly larger than both the normal control (6871mm3 vs 6415mm3, p < 0.001) and the non-AD dementia group (6871mm3 vs 6391 mm3, p < 0.001), but there was no difference between the non-AD dementia group and the normal control (6391 mm3 vs 6415mm3, p = 0.795). Similar results were observed for the axial, transverse and vertical length. No group differences were observed in the anisotropic ratio, indicating an isotropic volume increaseconsistent with previous changes induced by the ocular hypertension (OH), which suggested possible elevation of the intraocular pressure (IOP) in AD. In consideration of the recent findings in ocular changes of dementia, our findings emphasize routine eye examinations and eye cares for AD patients in the clinic

    A mobile prototype-based localization approach using inertial navigation and acoustic tracking for underwater

    Get PDF
    During underwater operations, divers must determine their own trajectories using the Inertial Navigation System (INS) they carry to improve operational efficiency. However, the INS contains a sensor bias that is also incorporated into the quadratic integration process to obtain the displacement, resulting in trajectory drift of the divers during prolonged self-guidance. To overcome the above problem, other aids are needed to correct the accumulated error of the INS. The single-beacon Assisted Inertial Navigation (AIN) method can improve the flexibility of inertial error correction while simplifying the localization equipment, which is suitable for the INS cumulative error correction scenario of divers. However, most of the traditional single-beacon assisted correction methods do not consider the effect of acoustic line bending on hydroacoustic ranging, and at the same time, they do not consider the problem of singular or pathological coefficient matrices introduced by inertial navigation neighbor localization deviations. Based on the above two shortcomings, this paper uses the acoustic velocity profile for acoustic line tracking, combines the localization idea of Mobile Primitives (MP), and proposes an MP-based acoustic line tracking-Assisted Inertial Navigation Localization (AINL) method, which constructs a sliding time window (STW) by taking the historical positioning of divers as a virtual primitive, and combines the nonlinear optimization method for iterative optimization search as a means to improve the accuracy and stability of self-navigation of the divers

    Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer

    Get PDF
    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer

    Development and validation of a prognostic nomogram for rectal cancer patients who underwent surgical resection

    Get PDF
    Objective: The purpose of this study was to develop and validate a nomogram model for the prediction of survival outcome in rectal cancer patients who underwent surgical resection.Methods: A total of 9,919 consecutive patients were retrospectively identified using the Surveillance, Epidemiology, and End Results (SEER) database. Significant prognostic factors were determined by the univariate and multivariate Cox analysis. The nomogram model for the prediction of cancer-specific survival (CSS) in rectal cancer patients were developed based on these prognostic variables, and its predictive power was assessed by the concordance index (C-index). Calibration curves were plotted to evaluate the associations between predicted probabilities and actual observations. The internal and external cohort were used to further validate the predictive performance of the prognostic nomogram.Results: All patients from the SEER database were randomly split into a training cohort (n = 6,944) and an internal validation cohort (n = 2,975). The baseline characteristics of two cohorts was comparable. Independent prognostic factors were identified as age, pT stage, lymph node metastasis, serum CEA level, tumor size, differentiation type, perineural invasion, circumferential resection margin involvement and inadequate lymph node yield. In the training cohort, the C-index of the nomogram was 0.719 (95% CI: 0.696–0.742), which was significantly higher than that of the TNM staging system (C-index: 0.606, 95% CI: 0.583–0.629). The nomogram had a C-index of 0.726 (95% CI: 0.691–0.761) for the internal validation cohort, indicating a good predictive power. In addition, an independent cohort composed of 202 rectal cancer patients from our institution were enrolled as the external validation. Compared with the TNM staging system (C-index: 0.573, 95% CI: 0.492–0.654), the prognostic nomogram still showed a better predictive performance, with the C-index of 0.704 (95% CI: 0.626–0.782). Calibration plots showed a good consistency between predicted probability and the actual observation in the training and two validation cohorts.Conclusion: The nomogram showed an excellent predictive ability for survival outcome of rectal cancer patients, and it might provide an accurate prognostic stratification and help clinicians determine individualized treatment strategies

    Flexible Coherent Optical Access: Architectures, Algorithms, and Demonstrations

    Full text link
    To cope with the explosive bandwidth demand, significant progress has been made in the ITU-T standardization sector to define a higher-speed passive optical network (PON) with a 50Gb/s line rate. Recently, 50G PON becomes mature gradually, which means it is time to discuss beyond 50G PON. For ensuring an acceptable optical power budget, beyond 50G PON will potentially use coherent technologies, which can simultaneously promote the applications of flexible multiple access such as time/frequency-domain multiple access (TFDMA). In this paper, we will introduce the architectures, algorithms, and demonstrations for TFDMA-based coherent PON. The system architectures based on an ultra-simple coherent transceiver and specific signal spectra are designed to greatly reduce the cost of ONUs. Meanwhile, fast and low-complexity digital signal processing (DSP) algorithms are proposed for dealing with upstream and downstream signals. Based on the architectures and algorithms, we experimentally demonstrate the first real-time TFDMA-based coherent PON, which can support at most 256 end users, and peak line rates of 100Gb/s and 200Gb/s in the upstream and downstream scenarios, respectively. In conclusion, the proposed technologies for the coherent PON make it more possible to be applied in the future beyond 50G PON.Comment: The paper has been submitted to the Journal of Lightwave Technolog

    FDMA in Point-to-Multipoint Fibre Access Systems for Non-Residential Applications

    Get PDF
    Optical access networks are seeing growing applications for use cases beyond residential, for example in campus and as Industry 4.0 intra-factory networks, which introduce different requirements in terms of bandwidth delivery and latency. We present an uplink access system with simultaneous transmission and detection of several users by means of frequency division multiplexing (FDM). We demonstrate a multiple uplink access system with differential binary phase shift keying (DBPSK) signals and coherent detection that targets a low and deterministic latency. We achieve receiver (Rx) sensitivities of -43.5dBm, -40dBm, and -34dBm at a pre forward error correction (FEC) bit error ratio (BER) of 10 -3 at 2.5 GBaud, 5 GBaud, and 8 GBaud respectively after 20km of fibre with coherent detection. Furthermore, we show the possibility of employing time-division multiplexing (TDM) within the frequency bands. We also present real-time services showing that the system can allow latency-sensitive and best-effort applications to share the network

    Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat

    Get PDF
    Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution
    • …
    corecore