115 research outputs found

    Seed Germination Responses to Seasonal Temperature and Drought Stress Are Species‐Specific but Not Related to Seed Size in a Desert Steppe: Implications for Effect of Climate Change on Community Structure

    Get PDF
    Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, −0.003, −0.027, −0.155, and −0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to \u3e60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at −0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe

    Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes:A dual role for stem diameter

    Get PDF
    Litter decomposition in sunny, semi-arid and arid ecosystems is controlled by both biotic factors including litter traits and abiotic factors including UV light, but for wood decomposition it still remains uncertain which of these environmental factors are the predominant controls among different woody species. In these dry ecosystems, it is likely that the stem diameter and spatial position of the dead wood are of particular importance especially where wood can be buried versus exposed due to substrate displacement by wind. Here we focus on the fact that stem diameter can affect decomposition rates both via the relative surface exposure to sunlight or soil and via higher resource quality of narrower stems to decomposers. In a field manipulation experiment, we investigated the relative importance of litter position (sand burial vs. surface vs. suspended above the surface), UV radiation (block versus pass) and stem diameter class (<2, 2–4, 4–8, 8–13 and 13–20 mm) on the mass loss of woody litters of four shrub species in an inland dune ecosystem in northern China. We found that after 34 months of in situ incubation, the mass loss of buried woody litters was three times faster than those of suspended and surface woody litters (53.5 ± 2.7%, 17.0 ± 1.0% and 14.4 ± 1.2%, respectively). In surface and suspended positions, litter decomposition rates were almost equally low and most mass loss was during the first 2 years, when bark was still attached and UV radiation had no significant effect on woody litter mass loss. These findings suggest that sand burial is the main environmental driver of wood decomposition via its control on microbial activity. Moreover, wood N and diameter class were the predominant factors driving woody litter decomposition. A key finding was that wider stems had slower litter decomposition rates not only directly (presumably via greater relative surface exposure) but also indirectly via their higher wood dry matter content or lower wood N; these effects were modulated by litter position. Our findings highlight a dual role of stem diameter on wood decomposition, that is, via relative surface exposure and via wood traits. The accuracy and confidence of global carbon cycling models would be improved by incorporating the different effects of stem diameter on woody litter decomposition and below-ground wood decomposition processes in drylands

    Profile storage of organic/inorganic carbon in soil: From forest to desert

    Get PDF
    Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3 m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3 m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest &gt; grassland &gt; shrub-grassland &gt; shrub desert &gt; desert; for density of soil inorganic carbon: forest, grassland &lt; shrub-grassland &lt; shrub desert &lt; desert (P&lt;0.05 in all cases). In landscapes other than forest, more than 50% soil carbon storage was found in 1-3 m depth. For grassland and shrub-grassland, the contribution from 1-3 m was mainly in the form of organic carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of inorganic carbon. The comparison of soil C storage between top 0-1 m and 1-3 m showed that the using top 1 m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage. This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert region. (C) 2010 Elsevier B.V. All rights reserved

    Sustainable ultra‐strong thermally conductive wood‐based antibacterial structural materials with anti‐corrosion and ultraviolet shielding

    Get PDF
    In light of the uprising global development on sustainability, an innovative and environmental friendly wood-based material derived from natural pinewood has been developed as a high-performance alternative to petrochemical-based materials. The wood-based functional material, named as BC-CaCl2, is synthesized through the coordination of carboxyl groups (−COOH) present in pinewood with calcium ions (Ca2+), which facilitates the formation of a high-density cross-linking structure through the combined action of intermolecular hydrogen bonds. The as-prepared BC-CaCl2 exhibits excellent tensile strength (470.5 MPa) and flexural strength (539.5 MPa), establishing a robust structural basis for the materials. Meanwhile, BC-CaCl2 shows good water resistance, thermal conductivity, thermal stability, UV resistance, corrosion resistance, and antibacterial properties. BC-CaCl2 represents a viable alternative to petrochemical-based materials. Its potential application areas include waterproof enclosure structure of buildings, indoor underfloor heating, outdoor UV resistant protective cover, and anti-corrosion materials for installation engineering, and so forth

    Seroprevalence of Neutralizing Antibodies to Human Adenovirus Type 4 and 7 in Healthy Populations From Southern China

    Get PDF
    Human adenoviruses type 4 (HAdV4) and 7 (HAdV7) are two major respiratory pathogens and sporadically cause outbreaks of acute respiratory diseases. The neutralizing antibody (nAb) response to these two adenoviruses in civilian populations, which is important for dissecting previous circulations and predicting potential outbreaks, remains largely unknown. In this study, we generated replication-competent HAdV4 and HAdV7 reporter viruses expressing secreted-alkaline-phosphatase (SEAP), and established neutralization assays to investigate the seroprevalence of pre-existing nAb in healthy volunteers from Hunan Province, southern China. The seropositivity rates are 58.4 and 63.8% for anti-HAdV4 nAb and anti-HAdV7 nAb, respectively. High nAb titers (&gt; 1000) were frequently detected in HAdV4-seropositive individuals, whereas most HAdV7-seropositive volunteers had moderate nAb titers (201–1000). The seropositivity rates of anti-HAdV4 nAb and anti-HAdV7 nAb increase with age, with individuals younger than 20 exhibiting the lowest seropositivity rates. Both seropositivity rates and nAb titers are comparable between different sex groups. Notably, HAdV4-seropositive individuals tend to be HAdV7-seropositive and vice versa. Because HAdV4 antisera showed no neutralizing activity to HAdV7 whereas HAdV7 antisera cannot neutralize HAdV4, a subgroup of individuals might be susceptible to infection by HAdV4 and HAdV7 and thus generate nAb to both of them. These results revealed the continuous circulation of HAdV4 and HAdV7 and the lack of protective immunity in more than 35% of people, which emphasized the surveillance of these two HAdVs and the development of prophylactic vaccines

    P.: Profile storage of organic/inorganic carbon in soil: from forest to desert, Sci

    No full text
    a b s t r a c t a r t i c l e i n f o Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3 m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3 m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest &gt; grassland &gt; shrub-grassland &gt; shrub desert &gt; desert; for density of soil inorganic carbon: forest, grassland &lt; shrub-grassland &lt; shrub desert &lt; desert (P &lt; 0.05 in all cases). In landscapes other than forest, more than 50% soil carbon storage was found in 1-3 m depth. For grassland and shrub-grassland, the contribution from 1-3 m was mainly in the form of organic carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of inorganic carbon. The comparison of soil C storage between top 0-1 m and 1-3 m showed that the using top 1 m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage. This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert region

    Leaf and root nutrient concentrations and stoichiometry along aridity and soil fertility gradients

    No full text
    Questions: Leaf nitrogen (N), phosphorus (P) concentrations and N : P ratio have been extensively studied along environmental gradients, but whether and how leaves and roots show similar responses to climatic and fertility gradients is little studied. Also, the responses of leaf and root N and P in different plant functional types (PFT; legumes, grasses, forbs and shrubs) to environmental gradients are poorly known. We examined the following two hypotheses: (a) P concentration and N : P ratios in leaves or fine roots would not be modulated by soil N for legumes while they would be for non-legume PFTs; (b) Species turnover would have stronger influence on the responses of N and P concentrations and N : P ratios of plant tissues along aridity and soil fertility gradients than intraspecific variation. Study site: Ordos Plateau, China. Methods: We collected samples of leaf and fine roots covering 95 species of 28 families across 17 sites affiliated to four vegetation types on the dry Ordos Plateau of North China and compared variations in N and P concentrations and N : P ratios in both leaves and fine roots among PFTs. Results: We found that legumes had higher N concentrations in leaves and fine roots than the non-legume PFTs. Leaf and fine root P and N : P ratios increased with increasing soil N for most non-legume PFTs, but the relationships were decoupled for legumes. Species turnover had a stronger contribution to these relationships of N and P in leaves and fine roots along aridity and soil N gradients than intraspecific variation. Conclusions: When modeling vegetation nutrient stocks and cycling, the predictive power could be improved by taking into account not only influences of soil fertility but also of climate on leaf and root tissue N and soil N on tissue P and N : P ratio, especially for non-legume functional types

    Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    Get PDF
    The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought
    • 

    corecore