4 research outputs found

    Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers

    Get PDF
    The present study aimed to identify the NAT2 haplotypes, linkage disequilibrium, and novel NAT2 genetic variants among Jordanian population. We isolated the genomic DNA from 68 healthy, Arab, unrelated Jordanian volunteers to amplify the protein-coding region of NAT2 gene by polymerase chain reaction (PCR). Then, the amplified PCR products were sequenced using Applied Biosystems Model (ABI3730x1). It is found that the allele frequencies of known NAT2 genetic variants 191G>A, 282C>T, 341T>C, 481C>T, 590G>A, and 803A>G were 0.7, 26.5, 48.5, 35.3, 30.9, and 32.4%, respectively. The NAT2 allele frequencies were generally similar to those of white Europeans but different from those of Asian and African populations. The most common NAT2 haplotype was NAT2*5B with a frequency of 29.3%. According to the NAT2 haplotype frequencies, 72% (95% confidence interval 61.4ā€“82.7%) of the volunteers were slow encoding NAT2 haplotype acetylators. The NAT2*5 represented variants 341T>C and 481C>T were in strong but not complete linkage disequilibrium (Dā€²Ā =Ā 0.8, r2Ā =Ā 0.63). In addition, this study found a novel nonsynonymous NAT2 436G>A genetic variant with low frequency (0.7%). However, this novel variant was predicted to be tolerated and not harmful to the NAT2 protein, using in silico prediction tools. It is concluded that the frequency of slow encoding NAT2 haplotype was high among Jordanian volunteers, which may have effects on drug responses and susceptibility to some diseases, such as cancers

    Molecular Functionality of Cytochrome P450 4 (CYP4) Genetic Polymorphisms and Their Clinical Implications

    No full text
    Enzymes in the cytochrome P450 4 (CYP4) family are involved in the metabolism of fatty acids, xenobiotics, therapeutic drugs, and signaling molecules, including eicosanoids, leukotrienes, and prostanoids. As CYP4 enzymes play a role in the maintenance of fatty acids and fatty-acid-derived bioactive molecules within a normal range, they have been implicated in various biological functions, including inflammation, skin barrier, eye function, cardiovascular health, and cancer. Numerous studies have indicated that genetic variants of CYP4 genes cause inter-individual variations in metabolism and disease susceptibility. Genetic variants of CYP4A11, 4F2 genes are associated with cardiovascular diseases. Mutations of CYP4B1, CYP4Z1, and other CYP4 genes that generate 20-HETE are a potential risk for cancer. CYP4V2 gene variants are associated with ocular disease, while those of CYP4F22 are linked to skin disease and CYP4F3B is associated with the inflammatory response. The present study comprehensively collected research to provide an updated view of the molecular functionality of CYP4 genes and their associations with human diseases. Functional analysis of CYP4 genes with clinical implications is necessary to understand inter-individual variations in disease susceptibility and for the development of alternative treatment strategies
    corecore