48 research outputs found

    Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China

    Get PDF
    SummaryObjectivesThe role of integrons in the spread of antibiotic resistance has been well established. The aim of this study was to investigate the resistance profiles of Pseudomonas aeruginosa isolated from patients in Zhenjiang to 13 antibiotics, and to identify the structure and dissemination of class 1 integrons.MethodsThe Kirby–Bauer disk diffusion assay was used to determine the rate of P. aeruginosa resistance. Class 1 integrons from multidrug-resistant isolates were amplified by PCR, and their PCR products were sequenced. We also analyzed the integron structures containing the same gene cassettes by restriction fragment length polymorphism (RFLP). Isolates were genotyped by pulsed-field gel electrophoresis (PFGE).ResultsThe resistance rates were between 29.6% and 90.1%. The prevalence of class 1 integrons was 38.0%. These integrons included five gene cassettes (aadB, aac6-II, blaPSE-1, dfrA17, and aadA5). The dfrA17 and aadA5 gene cassettes were found most often.ConclusionsClass 1 integrons were found to be widespread in P. aeruginosa isolated from clinical samples in the Zhenjiang area of China. The antibiotic resistance rates in class 1 integron-positive strains of P. aeruginosa were noticeably higher than those in class 1 integron-negative strains. PFGE showed that particular clones were circulating among patients

    Downregulation of Hlx

    Get PDF
    T-bet plays an important role in immunoregulation; it induces the differentiation of Th1 together with the homeobox transcription factor gene Hlx. Recent studies show that T-bet and Th1-associated factors are critical in regulating tumor development. However, the contributions of Hlx in the occurrence and development of cancer remain unknown. In this study, the Hlx, T-bet, Runx3, and IFN-γ were measured in PBMC from patients with gastric cancer and the correlation between Hlx and T-bet or IFN-γ was assessed. The expression levels of Hlx, T-bet, and IFN-γwere significantly decreased, and there was a positive correlation between Hlx and T-bet or IFN-γ. In addition, the Runx3 expression was also downregulated with the lower T-bet mRNA level. These results suggested that the decreased Hlx expression was closely associated with T-bet and Runx3 downregulations and may contribute to the development of gastric cancer

    Fast and Simultaneous Determination of Soil Properties Using Laser-Induced Breakdown Spectroscopy (LIBS): A Case Study of Typical Farmland Soils in China

    No full text
    Accurate management of soil nutrients and fast and simultaneous acquisition of soil properties are crucial in the development of sustainable agriculture. However, the conventional methods of soil analysis are generally labor-intensive, environmentally unfriendly, as well as time- and cost-consuming. Laser-induced breakdown spectroscopy (LIBS) is a “superstar” technique that has yielded outstanding results in the elemental analysis of a wide range of materials. However, its application for analysis of farmland soil faces the challenges of matrix effects, lack of large-scale soil samples with distinct origin and nature, and problems with simultaneous determination of multiple soil properties. Therefore, LIBS technique, in combination with partial least squares regression (PLSR), was applied to simultaneously determinate soil pH, cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) in 200 soils from different farmlands in China. The prediction performances of full spectra and characteristic lines were evaluated and compared. Based on full spectra, the estimates of pH, CEC, SOM, TN, and TK achieved excellent prediction abilities with the residual prediction deviation (RPDV) values > 2.0 and the estimate of TP featured good performance with RPDV value of 1.993. However, using characteristic lines only improved the predicted accuracy of SOM, but reduced the prediction accuracies of TN, TP, and TK. In addition, soil AP and AK were predicted poorly with RPDV values of < 1.4 based on both full spectra and characteristic lines. The weak correlations between conventionally analyzed soil AP and AK and soil LIBS spectra are responsible for the poor prediction abilities of AP and AK contents. Findings from this study demonstrated that the LIBS technique combined with multivariate methods is a promising alternative for fast and simultaneous detection of some properties (i.e., pH and CEC) and nutrient contents (i.e., SOM, TN, TP, and TK) in farmland soils because of the extraordinary prediction performances achieved for these attributes

    Functional Conservation and Divergence of MOS1 That Controls Flowering Time and Seed Size in Rice and Arabidopsis

    No full text
    The heading date and grain size are two essential traits affecting rice yield. Here, we found that OsMOS1 promotes rice heading and affects its grain size. Knocking out OsMOS1 delayed heading, while the overexpression of OsMOS1 promoted heading in rice under long-day conditions. The transcriptions of the heading activators Ehd1, Hd3a, and RFT1 were decreased and the heading repressor Hd1 was increased in the osmos1 mutant. Conversely, the overexpression of OsMOS1 promoted the expressions of Ehd1, Hd3a, and RFT1, but inhibited the expression of Hd1. This suggests that OsMOS1 may control heading in rice by modulating the transcriptions of Ehd1, Hd3a, RFT1, and Hd1. In addition, knocking out OsMOS1 led to larger grains with longer grain lengths and higher grain weights. The seed cell size measurement showed that the cell lengths and cell widths of the outer glume epidermal cells of the osmos1 mutant were greater than those of the wild type. Furthermore, we also found that the overexpression of OsMOS1 in the Arabidopsis mos1 mutant background could suppress its phenotypes of late flowering and increased seed size. Thus, our study shows a conserved function of MOS1 in rice and Arabidopsis, and these findings shed light on the heading and seed size regulation in rice and suggest that OsMOS1 is a promising target for rice yield improvement

    Sarcomatoid renal cell carcinoma: a case report and literature review

    No full text
    Abstract Background The poorly differentiated renal cell carcinoma (RCC) with rhabdomyosarcomatous sarcomatoid differentiation shows a severely aggressive biological behavior characterized by rapid disease progression. Preoperative identification of the subtype with the prognostic factors and imaging features of sarcomatoid renal cell carcinoma (SRCC) would be of great clinical significance. Case presentation A 45-year-old male patient presented a nine day history of gross hematuria without any other symptoms. A computed tomography (CT) and a full-body fluorine-18 fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) - computed tomography (CT) scan urogram were performed. An initial diagnosis identified a space-occupying lesion of the right kidney, retroperitoneal and right renal hulum lymph node metastases, as well as a space-occupying lesion of the third thoracic vertebra (T3). A right radical nephrectomy was performed. Pathologic analysis revealed poorly differentiated RCC with rhabdomyosarcomatous sarcomatoid differentiation that extends into the renal sinus and the ureteral (T3N1M1). Five days later, the Magnetic Resonance imaging (MRI) evidenced a diffused osseous metastatic disease in the thoracic and lumbar vertebra and multiple retroperitoneal lymph node metastases. The disease progressed quickly to multiple organ dysfunction syndrome (MODS) in half a month and the patient died of respiratory failure two days later. The patient refused any chemoradiotherapy in the hospital. Conclusions Our case presents a SRCC with severe, aggressive, and rapid disease progression. Classifying SRCC imaging features by CT, MRI as well as PET-CT techniques could potentially be helpful for preoperative identification of the subtype. The prognostic factors of SRCC would be of great clinical interest

    Foliar particulate matter retention and toxic trace element accumulation of six roadside plant species in a subtropical city

    No full text
    Abstract As a major source of air pollution, particulate matter (PM) and associated toxic trace elements pose potentially serious threats to human health and environmental safety. As is known that plants can reduce air PM pollution. However, the relationship between PM of different sizes and toxic trace elements in foliar PM is still unclear. This study was performed to explore the association between PM of different sizes (PM2.5, PM10, PM>10) and toxic trace elements (As, Al, Cu, Zn, Cd, Fe, Pb) as well as the correlation among toxic trace elements of six roadside plant species (Cinnamomum camphora, Osmanthus fragrans, Magnolia grandiflora, Podocarpus macrophyllus, Loropetalum chinense var. rubrum and Pittosporum tobira) in Changsha, Hunan Province, China. Results showed that P. macrophyllus had the highest ability to retain PM, and C. camphora excelled in retaining PM2.5. The combination of P. macrophyllus and C. camphora was highly recommended to be planted in the subtropical city to effectively reduce PM. The toxic trace elements accumulated in foliar PM varied with plant species and PM size. Two-way ANOVA showed that most of the toxic trace elements were significantly influenced by plant species, PM size, and their interactions (P < 0.05). Additionally, linear regression and correlation analyses further demonstrated the homology of most toxic trace elements in foliar PM, i.e., confirming plants as predictors of PM sources as well as environmental monitoring. These findings contribute to urban air pollution control and landscape configuration optimization

    Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from <i>Lentinula edodes</i> via <i>Bacillus subtilis natto</i> Fermentation

    No full text
    Lentinan has important applications in the food and medicine fields. Fermenting Lentinula edodes with Bacillus subtilis natto increased the lentinan extraction yield by 87.13% and greatly altered the molecular structure and antioxidant activity of lentinan. The uronic acid content in the lentinan molecular structure increased from 2.08% to 4.33%. The fermentation process did not affect the monosaccharide composition of lentinan, comprised of more than 90% glucose residues. Fermentation significantly reduced the molecular weight of lentinan and altered its apparent structure. The water solubility of fermented lentinan was increased by 165.07%, and the antioxidant activity was significantly improved. Fermentation using soybean as a substrate may be beneficial for enhancing the activity of Bacillus subtilis natto and producing lentinan with different molecular weights

    Ectopic Expression of Mulberry G-Proteins Alters Drought and Salt Stress Tolerance in Tobacco

    No full text
    Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play key roles in responses to various abiotic stress responses and tolerance in plants. However, the detailed mechanisms behind these roles remain unclear. Mulberry (Morus alba L.) can adapt to adverse abiotic stress conditions; however, little is known regarding the associated molecular mechanisms. In this study, mulberry G-protein genes, MaG&alpha;, MaG&beta;, MaG&gamma;1, and MaG&gamma;2, were independently transformed into tobacco, and the transgenic plants were used for resistance identification experiments. The ectopic expression of MaG&alpha; in tobacco decreased the tolerance to drought and salt stresses, while the overexpression of MaG&beta;, MaG&gamma;1, and MaG&gamma;2 increased the tolerance. Further analysis showed that mulberry G-proteins may regulate drought and salt tolerances by modulating reactive oxygen species&rsquo; detoxification. This study revealed the roles of each mulberry G-protein subunit in abiotic stress tolerance and advances our knowledge of the molecular mechanisms underlying G-proteins&rsquo; regulation of plant abiotic stress tolerance
    corecore