1,100 research outputs found

    Effect of Morphological Changes due to Increasing Carbon Nanoparticles Content on the Quasi-Static Mechanical Response of Epoxy Resin

    Get PDF
    Mechanical failure in epoxy polymer and composites leads them to commonly be referred to as inherently brittle due to the presence of polymerization-induced microcrack and microvoids, which are barriers to high-performance applications, e.g., in aerospace structures. Numerous studies have been carried out on epoxy's strengthening and toughening via nanomaterial reinforcement, e.g., using rubber nanoparticles in the epoxy matrix of new composite aircraft. However, extremely cautious process and functionalization steps must be taken in order to achieve high-quality dispersion and bonding, the development of which is not keeping pace with large structures applications. In this article, we report our studies on the mechanical performance of an epoxy polymer reinforced with graphite carbon nanoparticles (CNPs), and the possible effects arising from a straightforward, rapid stir-mixing technique. The CNPs were embedded in a low viscosity epoxy resin, with the CNP weight percentage (wt %) being varied between 1% and 5%. Simplified stirring embedment was selected in the interests of industrial process facilitation, and functionalization was avoided to reduce the number of parameters involved in the study. Embedment conditions and timing were held constant for all wt %. The CNP filled epoxy resin was then injected into an aluminum mold and cured under vacuum conditions at 80 °C for 12 h. A series of test specimens were then extracted from the mold, and tested under uniaxial quasi-static tension, compression, and nanoindentation. Elementary mechanical properties including failure strain, hardness, strength, and modulus were measured. The mechanical performance was improved by the incorporation of 1 and 2 wt % of CNP but was degraded by 5 wt % CNP, mainly attributed to the morphological change, including re-agglomeration, with the increasing CNP wt %. This change strongly correlated with the mechanical response in the presence of CNP, and was the major governing mechanism leading to both mechanical improvement and degradation

    Nanoscale Proximity Effect in the High Temperature Superconductor Bi-2212

    Full text link
    High temperature cuprate superconductors exhibit extremely local nanoscale phenomena and strong sensitivity to doping. While other experiments have looked at nanoscale interfaces between layers of different dopings, we focus on the interplay between naturally inhomogeneous nanoscale regions. Using scanning tunneling microscopy to carefully track the same region of the sample as a function of temperature, we show that regions with weak superconductivity can persist to elevated temperatures if bordered by regions of strong superconductivity. This suggests that it may be possible to increase the maximum possible transition temperature by controlling the distribution of dopants.Comment: To appear in Physical Review Letter

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor

    Get PDF
    We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground states. In the latter, spatially resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and to probe their topological properties
    • …
    corecore