97 research outputs found

    Quasiparticle interference of C2-symmetric surface states in LaOFeAs parent compound

    Full text link
    We present scanning tunneling microscopy studies of the LaOFeAs parent compound of iron pnictide superconductors. Topographic imaging reveals two types of atomically flat surfaces, corresponding to the exposed LaO layer and FeAs layer respectively. On one type of surface, we observe strong standing wave patterns induced by quasiparticle interference of two-dimensional surface states. The distribution of scattering wavevectors exhibits pronounced two-fold symmetry, consistent with the nematic electronic structure found in the Ca(Fe1-xCox)2As2 parent state.Comment: 13 pages, 4 figure

    Modeling of Characteristics on Artificial Intelligence IQ Test: a Fuzzy Cognitive Map-Based Dynamic Scenario Analysis

    Get PDF
    This research article uses a Fuzzy Cognitive Map (FCM) approach to improve an earlier proposed IQ test characteristics of Artificial Intelligence (AI) systems. The defuzzification process makes use of fuzzy logic and the triangular membership function along with linguistic term analyses. Each edge of the proposed FCM is assigned to a positive or negative influence type associated with a quantitative weight. All the weights are based on the defuzzified value in the defuzzification results. This research also leverages a dynamic scenario analysis to investigate the interrelationships between driver concepts and other concepts. Worst and best-case scenarios have been conducted on the correlation among concepts. We also use an inference simulation to examine the concepts importance order and the FCM convergence status. The analysis results not only examine the FCM complexity, but also draws insightful conclusions

    Modeling of Characteristics on Artificial Intelligence IQ Test: a Fuzzy Cognitive Map-Based Dynamic Scenario Analysis

    Get PDF
    This research article uses a Fuzzy Cognitive Map (FCM) approach to improve an earlier proposed IQ test characteristics of Artificial Intelligence (AI) systems. The defuzzification process makes use of fuzzy logic and the triangular membership function along with linguistic term analyses. Each edge of the proposed FCM is assigned to a positive or negative influence type associated with a quantitative weight. All the weights are based on the defuzzified value in the defuzzification results. This research also leverages a dynamic scenario analysis to investigate the interrelationships between driver concepts and other concepts. Worst and best-case scenarios have been conducted on the correlation among concepts. We also use an inference simulation to examine the concepts importance order and the FCM convergence status. The analysis results not only examine the FCM complexity, but also draws insightful conclusions

    Strong similarities between the local electronic structure of insulating iron pnictide and lightly doped cuprate

    Full text link
    One of the major puzzles regarding unconventional superconductivity is how some of the most interesting superconductors are related to an insulating phase that lies in close proximity. Here we report scanning tunneling microscopy studies of the local electronic structure of Cu doped NaFeAs across the superconductor to insulator transition. We find that in the highly insulating regime the electronic spectrum develops an energy gap with diminishing density of state at the Fermi level. The overall lineshape and strong spatial variations of the spectra are strikingly similar to that of lightly doped cuprates close to the parent Mott insulator. We propose that the suppression of itinerant electron state and strong impurity potential induced by Cu dopants lead to this insulating iron pnictide.Comment: 6 figures, to appear in Phys. Rev.

    Simultaneous electrical-field-effect modulation of both top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators

    Full text link
    It is crucial for the studies of the transport properties and quantum effects related to Dirac surface states of three-dimensional topological insulators (3D TIs) to be able to simultaneously tune the chemical potentials of both top and bottom surfaces of a 3D TI thin film. We have realized this in molecular beam epitaxy-grown thin films of 3D TIs, as well as magnetic 3D TIs, by fabricating dual-gate structures on them. The films could be tuned between n-type and p-type by each gate alone. Combined application of two gates can reduce the carrier density of a TI film to a much lower level than with only one of them and enhance the film resistance by 10000 %, implying that Fermi level is tuned very close to the Dirac points of both top and bottom surface states without crossing any bulk band. The result promises applications of 3D TIs in field effect devices.Comment: 19 pages, 4 figures, accepted by Nano Letters, forthcomin

    Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two dimensional limit

    Full text link
    We report a transport study of ultrathin Bi2Se3 topological insulators with thickness from one quintuple layer to six quintuple layers grown by molecular beam epitaxy. At low temperatures, the film resistance increases logarithmically with decreasing temperature, revealing an insulating ground state. The sharp increase of resistance with magnetic field, however, indicates the existence of weak antilocalization, which should reduce the resistance as temperature decreases. We show that these apparently contradictory behaviors can be understood by considering the electron interaction effect, which plays a crucial role in determining the electronic ground state of topological insulators in the two dimensional limit.Comment: 4 figure

    The emergence of global phase coherence from local pairing in underdoped cuprates

    Full text link
    In conventional metal superconductors such as aluminum, the large number of weakly bounded Cooper pairs become phase coherent as soon as they start to form. The cuprate high critical temperature (TcT_c) superconductors, in contrast, belong to a distinctively different category. To account for the high TcT_c, the attractive pairing interaction is expected to be strong and the coherence length is short. Being doped Mott insulators, the cuprates are known to have low superfluid density, thus are susceptible to phase fluctuations. It has been proposed that pairing and phase coherence may occur separately in cuprates, and TcT_c corresponds to the phase coherence temperature controlled by the superfluid density. To elucidate the microscopic processes of pairing and phase ordering in cuprates, here we use scanning tunneling microscopy to image the evolution of electronic states in underdoped Bi2LaxSr2−xCuO6+δ\rm Bi_2La_xSr_{2-x}CuO_{6+{\delta}}. Even in the insulating sample, we observe a smooth crossover from the Mott insulator to superconductor-type spectra on small islands with chequerboard order and emerging quasiparticle interference patterns following the octet model. Each chequerboard plaquette contains approximately two holes, and exhibits a stripy internal structure that has strong influence on the superconducting features. Across the insulator to superconductor boundary, the local spectra remain qualitatively the same while the quasiparticle interferences become long-ranged. These results suggest that the chequerboard plaquette with internal stripes plays a crucial role on local pairing in cuprates, and the global phase coherence is established once its spatial occupation exceeds a threshold
    • …
    corecore