45 research outputs found

    Effect of earthquake on stability of subway station and ground motions of surrounding rock masses

    Get PDF
    The effect of earthquakes on the stability of the subway station and ground motions of surrounding rock masses, plays a key role in the seismic design of the subway station to avoid severe damage to subway station itself and adjacent structures. Most of the reported cases in the literatures on the effect of earthquake on ground motions focused on the ground motions without considering underground structures. In this study, the effect of earthquakes on the stability of the subway station, and ground motions of surrounding rock masses were investigated by using the Flac3d. The ground acceleration and safety factor of tunnel lining were highlighted. The results of the numerical analysis indicated the presence of a subway station has a great influence on ground motions, especially for the vertical ground acceleration. The ground acceleration increases with the decrease of buried depth. The amplification factor of ground acceleration is about 1.42. It exists an amplification region above the subway station with the width of 15 m. The safety factor of tunnel lining in subway station has a significant decrease in the maximum decrease rate of 67 %. The safety factor of tunnel lining except for tunnel crown and bottom changes periodic. Ground acceleration will induce extrusion or detach between surrounding rock masses and tunnel lining, and the direction of ground acceleration has a great influence on distribution of safety factor. The side wall and arch feet of tunnel lining is the most unfavorable part. Special attention should be paid to the side wall and arch feet of the subway station during seismic design

    Wide Graph Neural Networks: Aggregation Provably Leads to Exponentially Trainability Loss

    Full text link
    Graph convolutional networks (GCNs) and their variants have achieved great success in dealing with graph-structured data. However, it is well known that deep GCNs will suffer from over-smoothing problem, where node representations tend to be indistinguishable as we stack up more layers. Although extensive research has confirmed this prevailing understanding, few theoretical analyses have been conducted to study the expressivity and trainability of deep GCNs. In this work, we demonstrate these characterizations by studying the Gaussian Process Kernel (GPK) and Graph Neural Tangent Kernel (GNTK) of an infinitely-wide GCN, corresponding to the analysis on expressivity and trainability, respectively. We first prove the expressivity of infinitely-wide GCNs decaying at an exponential rate by applying the mean-field theory on GPK. Besides, we formulate the asymptotic behaviors of GNTK in the large depth, which enables us to reveal the dropping trainability of wide and deep GCNs at an exponential rate. Additionally, we extend our theoretical framework to analyze residual connection-resemble techniques. We found that these techniques can mildly mitigate exponential decay, but they failed to overcome it fundamentally. Finally, all theoretical results in this work are corroborated experimentally on a variety of graph-structured datasets.Comment: 23 pages, 4 figure

    Effect of soft layer on seismic response of subway station in layered stratum

    Get PDF
    The seismic behavior of subway and highway tunnel has been an important topic followed the seismic damages of several structures in recent large earthquakes. Soft layer is often encountered in engineering site, and it is often located with normal strata. There have been limited literatures concerned on seismic performance of subway station with the presence of soft layer. Flac3D is employed to investigate the effect of soft layer on seismic response of subway station structure in earthquake. The effect of soft layer locating below subway station is firstly studied. Then the seismic response of subway station against location of soft layer is further investigated. The relative displacement, acceleration and safety factor of secondary lining, and internal force of central column are highlighted. It is found from numerical results that effects of the two cases are similar when soft layer locates below or above subway station and both beneficial for improving the safety of subway station compared with the case without soft layer. The case when soft layer locates below subway station is more preferable than the case above. It is also found that in the case when soft layer is within the range of subway station, it will greatly amplify the acceleration and internal force of secondary lining, especially for the part that is close to soft layer, and the influence degree gradually decreases with the increase of relative distance to soft layer. As a result, soft layer is generally beneficial for improving stability of subway station, but it should be avoided to be located within the range of subway station to ensure the stability of subway station

    Effect of earthquake on stability of subway station and ground motions of surrounding rock masses

    Get PDF
    The effect of earthquakes on the stability of the subway station and ground motions of surrounding rock masses, plays a key role in the seismic design of the subway station to avoid severe damage to subway station itself and adjacent structures. Most of the reported cases in the literatures on the effect of earthquake on ground motions focused on the ground motions without considering underground structures. In this study, the effect of earthquakes on the stability of the subway station, and ground motions of surrounding rock masses were investigated by using the Flac3d. The ground acceleration and safety factor of tunnel lining were highlighted. The results of the numerical analysis indicated the presence of a subway station has a great influence on ground motions, especially for the vertical ground acceleration. The ground acceleration increases with the decrease of buried depth. The amplification factor of ground acceleration is about 1.42. It exists an amplification region above the subway station with the width of 15 m. The safety factor of tunnel lining in subway station has a significant decrease in the maximum decrease rate of 67 %. The safety factor of tunnel lining except for tunnel crown and bottom changes periodic. Ground acceleration will induce extrusion or detach between surrounding rock masses and tunnel lining, and the direction of ground acceleration has a great influence on distribution of safety factor. The side wall and arch feet of tunnel lining is the most unfavorable part. Special attention should be paid to the side wall and arch feet of the subway station during seismic design

    Effect of earthquake on stability of subway station and ground motions of surrounding rock masses

    Get PDF
    The effect of earthquakes on the stability of the subway station and ground motions of surrounding rock masses, plays a key role in the seismic design of the subway station to avoid severe damage to subway station itself and adjacent structures. Most of the reported cases in the literatures on the effect of earthquake on ground motions focused on the ground motions without considering underground structures. In this study, the effect of earthquakes on the stability of the subway station, and ground motions of surrounding rock masses were investigated by using the Flac3d. The ground acceleration and safety factor of tunnel lining were highlighted. The results of the numerical analysis indicated the presence of a subway station has a great influence on ground motions, especially for the vertical ground acceleration. The ground acceleration increases with the decrease of buried depth. The amplification factor of ground acceleration is about 1.42. It exists an amplification region above the subway station with the width of 15 m. The safety factor of tunnel lining in subway station has a significant decrease in the maximum decrease rate of 67 %. The safety factor of tunnel lining except for tunnel crown and bottom changes periodic. Ground acceleration will induce extrusion or detach between surrounding rock masses and tunnel lining, and the direction of ground acceleration has a great influence on distribution of safety factor. The side wall and arch feet of tunnel lining is the most unfavorable part. Special attention should be paid to the side wall and arch feet of the subway station during seismic design

    Effect of earthquake on stability of subway station and ground motions of surrounding rock masses

    Get PDF
    The effect of earthquakes on the stability of the subway station and ground motions of surrounding rock masses, plays a key role in the seismic design of the subway station to avoid severe damage to subway station itself and adjacent structures. Most of the reported cases in the literatures on the effect of earthquake on ground motions focused on the ground motions without considering underground structures. In this study, the effect of earthquakes on the stability of the subway station, and ground motions of surrounding rock masses were investigated by using the Flac3d. The ground acceleration and safety factor of tunnel lining were highlighted. The results of the numerical analysis indicated the presence of a subway station has a great influence on ground motions, especially for the vertical ground acceleration. The ground acceleration increases with the decrease of buried depth. The amplification factor of ground acceleration is about 1.42. It exists an amplification region above the subway station with the width of 15 m. The safety factor of tunnel lining in subway station has a significant decrease in the maximum decrease rate of 67 %. The safety factor of tunnel lining except for tunnel crown and bottom changes periodic. Ground acceleration will induce extrusion or detach between surrounding rock masses and tunnel lining, and the direction of ground acceleration has a great influence on distribution of safety factor. The side wall and arch feet of tunnel lining is the most unfavorable part. Special attention should be paid to the side wall and arch feet of the subway station during seismic design

    Validity and applicability of the global leadership initiative on malnutrition criteria in non-dialysis patients with chronic kidney disease

    Get PDF
    IntroductionThere are no standardized assessment criteria for selecting nutritional risk screening tools or indicators to assess reduced muscle mass (RMM) in the Global Leadership Initiative on Malnutrition (GLIM) criteria. We aimed to compare the consistency of different GLIM criteria with Subjective Global Assessment (SGA) and protein-energy wasting (PEW).MethodsIn this study, nutritional risk screening 2002 first four questions (NRS-2002-4Q), Nutritional Risk Screening 2002 (NRS-2002), Malnutrition Universal Screening Tool (MUST), and Mini-Nutritional Assessment Short-Form (MNA-SF) tools were used as the first step of nutritional risk screening for the GLIM. The RMM is expressed using different metrics. The SGA and PEW were used to diagnose patients and classify them as malnourished and non-malnourished. Kappa (κ) tests were used to compare the concordance between the SGA, PEW, and GLIM of each combination of screening tools.ResultsA total of 157 patients were included. Patients with Chronic kidney disease (CKD) stage 1–3 accounted for a large proportion (79.0%). The prevalence rates of malnutrition diagnosed using the SGA and PEW were 18.5% and 19.7%, respectively. The prevalence of GLIM-diagnosed malnutrition ranges from 5.1% to 37.6%, depending on the different screening methods for nutritional risk and the different indicators denoting RMM. The SGA was moderately consistent with the PEW (κ = 0.423, p < 0.001). The consistency among the GLIM, SGA, and PEW was generally low. Using the NRS-2002-4Q to screen for nutritional risk, GLIM had the best agreement with SGA and PEW when skeletal muscle index (SMI), fat-free mass index (FFMI), and hand grip strength (HGS) indicated a reduction in muscle mass (SGA: κ = 0.464, 95% CI 0.28–0.65; PEW: κ = 0.306, 95% CI 0.12–0.49).ConclusionThe concordance between the GLIM criteria and the SGA and PEW depended on the screening tool used in the GLIM process. The inclusion of RMM in the GLIM framework is important. The addition of HGS could further improve the performance of the GLIM standard compared to the use of body composition measurements
    corecore