46 research outputs found

    DNA repair glycosylases with a [4Feā€“4S] cluster: A redox cofactor for DNA-mediated charge transport?

    Get PDF
    The [4Feā€“4S] cluster is ubiquitous to a class of base excision repair enzymes in organisms ranging from bacteria to man and was first considered as a structural element, owing to its redox stability under physiological conditions. When studied bound to DNA, two of these repair proteins (MutY and Endonuclease III from Escherichia coli) display DNA-dependent reversible electron transfer with characteristics typical of high potential iron proteins. These results have inspired a reexamination of the role of the [4Feā€“4S] cluster in this class of enzymes. Might the [4Feā€“4S] cluster be used as a redox cofactor to search for damaged sites using DNA-mediated charge transport, a process well known to be highly sensitive to lesions and mismatched bases? Described here are experiments demonstrating the utility of DNA-mediated charge transport in characterizing these DNA-binding metalloproteins, as well as efforts to elucidate this new function for DNA as an electronic signaling medium among the proteins

    Photoinduced Electron Transfer in Ruthenium Bipyridyl Complexes: Evidence for the Existence of a Cage with Molecular Oxygen

    Get PDF
    Ruthenium complexes with three bipyridyl ligands, one of which is modified by attaching one or two hydroxamic acids groups (Ru-1 and Ru-2, respectively), were synthesized. Using EPR spectroscopy, we have found that photoexcitation leads to formation of nitroxyl radicals. The nitroxyl radical concentration in Ru-2 increased dramatically in the presence of spin traps DMPO (5,5ā€˜-dimethyl-1-pyrroline-N-oxide) and PBN (N-tert-butyl-Ī±-phenylnitrone) characterized by strong affinity to superoxide radicals. We have attributed this behavior to the formation of a cage complex between Ru-2 and the superoxide radical. This paper concerns the study of cages formed between ruthenium complexes and molecular oxygen and the effect of functional groups attached to modified bipyridyl ligands on cage formation. The complex between Ru-2 and O_2 was formed in the ground state, probably with participation of the hydroxamic acid groups. The equilibrium constant of this complex was determined by EPR as K_(eq) āˆ¼ 3 M^(-1). The formation of the Ru-2āˆ’O_2 complex is supported by the temperature-dependent rate of appearance of the EPR signal in the presence of PBN. Additional evidence comes from observation of paramagnetic shifts of the peaks in the 1H NMR spectrum of specific aromatic protons in the substituted bipyridyl ring upon exposure to O_2. Similar shifts were observed in the spectrum of Os-2, with osmium replacing ruthenium. Model compounds with functional groups that replace the hydroxamic acid or compounds without the metal center, but with the two hydroxamic acids, were synthesized. No shifts in the ^1H NMR spectra of these derivatives were observed in the presence of O_2. These results lead to the conclusion that both metal ions, Ru(II) or Os(II), and hydroxamic acid groups are essential components for the formation of the oxygen cage

    Coupling into the Base Pair Stack Is Necessary for DNA-Mediated Electrochemistry

    Get PDF
    The electrochemistry of DNA films modified with different redox probes linked to DNA through saturated and conjugated tethers was investigated. Experiments feature two redox probes bound to DNA on two surfaces:ā€‰ anthraquinone (AQ)-modified uridines incorporated into thiolated DNA on gold (Au) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-modified uridines in pyrene-labeled DNA on highly oriented pyrolytic graphite (HOPG). The electrochemistry of these labels when incorporated into DNA has been examined in DNA films containing both well matched and mismatched DNA. DNA-mediated electrochemistry is found to be effective for the TEMPO probe linked with an acetylene linker but not for a saturated TEMPO connected through an ethylenediamine linker. For the AQ probe, DNA-mediated electrochemistry is found with an acetylene linker to uridine but not with an alkyl chain to the 5ā€˜ terminus of the oligonucleotide. Large electrochemical signals and effective discrimination of intervening base mismatches are achieved for the probes connected through the acetylene linkages, while probes connected through saturated linkages exhibit small electrochemical signals associated only with direct surface to probe charge transfer and poor mismatch discrimination. Thus DNA electrochemistry with these probes is dramatically influenced by the chemical nature of their linkage to DNA. These results highlight the importance of effective coupling into the Ļ€-stack for long-range DNA-mediated electrochemistry

    Protein-DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    Get PDF
    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+). Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)(2)dppz](3+) (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S](3+) and [3Fe4S](1+) clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5'-G of a 5'-GG-3' doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair

    MiR-16-1* and miR-16-2* possess strong tumor suppressive and anti-metastatic properties in osteosarcoma

    Get PDF
    Osteosarcoma (OS) is an aggressive malignancy affecting mostly children and adolescents. MicroRNAs (miRNAs) play important roles in OS development and progression. Here we found that miR-16-1* and miR-16-2* ā€œpassengerā€ strands as well as the ā€œleadā€ miR-16 strand possess strong tumor suppressive functions in human OS. We report different although strongly overlapping functions for miR-16-1* and miR-16-2* in OS cells. Ectopic expression of these miRNAs affected primary tumor growth, metastasis seeding, and chemoresistance and invasiveness of human OS cells. Loss-of-function experiments verified tumor suppressive functions of these miRNAs at endogenous levels of expression. Using RNA immunoprecipitation (RIP) assays, we identify direct targets of miR-16-1* and miR-16-2* in OS cells. Furthermore, validation experiments identified FGFR2 as a direct target for miR-16-1* and miR-16-2*. Overall, our findings underscore the importance of passenger strand miRNAs in osteosarcomagenesis

    Peptide Nucleic Acids: Applications in Biomedical Sciences

    No full text
    The DNA mimic, PNA (peptide nucleic acid), has been with us now for almost 3 decades [...

    Predictive Model for the Sequence-Dependent Fluorogenic Response of Forced-Intercalation Peptide Nucleic Acid

    No full text
    The forced-intercalation peptide nucleic acid (FIT-PNA) concept, introduced by Seitz and co-workers, is based on replacing a nucleobase of the PNA sequence with a cyanine dye (such as thiazole orange). The cyanine dye is thus a surrogate base that is forced to intercalate in the duplex (e.g., PNA:DNA). This allows single-mismatch sensitivity as the introduction of a mismatch in the vicinity of the dye increases freedom of motion and leads to a significant depletion of its fluorescence because of the free rotation of the monomethine bond separating the two Ļ€-systems of the cyanine dye. Herein, we designed and synthesized six FIT-PNA probes, featuring bisquinoline (BisQ), a red-emitting cyanine dye recently developed in our laboratory for FIT-PNAs. By following PNAā€“DNA duplex fluorescence, we found new sequence-based factors governing the fluorescence response to the mismatched FIT-PNA:DNA duplex. Fluorogenic properties are correlated with the Ļ€-stacking energy of three distinctive base pair steps (BPSs) in the PNA:DNA duplex. The first two are the two BPSs opposite BisQ, whereas the third is the BPS of the mismatch position, which presumably becomes unstacked due to the mismatch. We suggest a predictive model for FIT-PNA single-mismatch detection mechanism, a model that can be used in future research to improve FIT-PNA design
    corecore