400 research outputs found

    Attenuation of Stimulated Accumbal Dopamine Release by NMDA Is Mediated through Metabotropic Glutamate Receptors

    Get PDF
    Electrically stimulated dopamine release from the nucleus accumbens is attenuated following application of N-methyl-d-aspartate (NMDA), which is likely to be mediated indirectly through intermediary neuronal mechanisms rather than by a direct action on dopamine terminals. On the basis of known modulatory processes in nucleus accumbens, the current experiments sought to test whether the effect of NMDA was mediated through cholinergic, GABA-ergic, or metabotropic glutamatergic intermediate mechanisms. Fast-scan cyclic voltammetry was used to measure electrically stimulated dopamine release in nucleus accumbens of rat brain slices in vitro. Stimulated dopamine release was attenuated by NMDA, confirming previous findings, but this attenuation was unaffected by either cholinergic or GABA-ergic antagonists. However, it was completely abolished by the nonselective group I/II/III metabotropic glutamate receptor antagonist α-methyl-4-carboxyphenylglycine (MCPG) and by the selective group II antagonist LY 341396. Therefore, group II metabotropic glutamate receptors, but not acetylcholine or GABA receptors, mediate the attenuation of stimulated dopamine release caused by NMDA, probably by presynaptic inhibition through receptors located extra-synaptically on dopamine terminals. This provides a plausible mechanism for the documented role of metabotropic glutamate receptor systems in restoring deficits induced by NMDA receptor antagonists, modeling schizophrenia, underlining the potential for drugs affecting these receptors as therapeutic agents in treating schizophrenia

    1 mJ pulse bursts from a Yb-doped fiber amplifier

    Get PDF
    Cataloged from PDF version of article.We demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier capable of generating 60 mu J pulses within bursts of 11 pulses with extremely uniform energy distribution facilitated by a novel feedback mechanism shaping the seed of the burst-mode amplifier. The burst energy can be scaled up to 1 mJ, comprising 25 pulses with 40 mu J average individual energy. The amplifier is synchronously pulse pumped to minimize amplified spontaneous emission between the bursts. Pulse propagation is entirely in fiber and fiber-integrated components until the grating compressor, which allows for highly robust operation. The burst repetition rate is set to 1 kHz and spacing between individual pulses is 10 ns. The 40 mu J pulses are externally compressible to a full width at half-maximum of 600 fs. However, due to the substantial pedestal of the compressed pulses, the effective pulse duration is longer, estimated to be 1.2 ps. (C) 2012 Optical Society of Americ

    Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet

    Full text link
    Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including the Hund's-rule, spin-orbit, and exchange interactions) are comparable in magnitude, and their interplay is poorly understood - partly due to difficulties in synthesizing sizable single crystals for spectroscopic experiments. Here we introduce a resonant inelastic x-ray scattering (RIXS) technique capable of probing collective modes in microcrystals of 4d4d-electron materials. We present a comprehensive set of data on spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2_{2}O6_{6}, which possesses an unusually high N\'eel temperature. The new RIXS method provides fresh insight into the unconventional magnetism of SrRu2_{2}O6_{6}, and enables momentum-resolved spectroscopy of a large class of 4d4d transition-metal compounds.Comment: The original submitted version of the published manuscript. https://www.nature.com/articles/s41563-019-0327-

    Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns. (C) 2011 Optical Society of Americ

    1 mJ pulse bursts from a Yb-doped fiber amplifier

    Get PDF
    We demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier capable of generating 60 μJ pulses within bursts of 11 pulses with extremely uniform energy distribution facilitated by a novel feedback mechanism shaping the seed of the burst-mode amplifier. The burst energy can be scaled up to 1 mJ, comprising 25 pulses with 40 μJ average individual energy. The amplifier is synchronously pulse pumped to minimize amplified spontaneous emission between the bursts. Pulse propagation is entirely in fiber and fiber-integrated components until the grating compressor, which allows for highly robust operation. The burst repetition rate is set to 1 kHz and spacing between individual pulses is 10 ns. The 40 μJ pulses are externally compressible to a full width at halfmaximum of 600 fs. However, due to the substantial pedestal of the compressed pulses, the effective pulse duration is longer, estimated to be 1.2 ps. © 2012 Optical Society of America
    corecore