3,060 research outputs found
The Hoop Conjecture in Spherically Symmetric Spacetimes
We give general sufficient conditions for the existence of trapped surfaces
due to concentration of matter in spherically symmetric initial data sets
satisfying the dominant energy condition. These results are novel in that they
apply and are meaningful for arbitrary spacelike slices, that is they do not
require any auxiliary assumptions such as maximality, time-symmetry, or special
extrinsic foliations, and most importantly they can easily be generalized to
the nonspherical case once an existence theory for a modified version of the
Jang equation is developed. Moreover, our methods also yield positivity and
monotonicity properties of the Misner-Sharp energy
Geometric Aspects of the Moduli Space of Riemann Surfaces
This is a survey of our recent results on the geometry of moduli spaces and
Teichmuller spaces of Riemann surfaces appeared in math.DG/0403068 and
math.DG/0409220. We introduce new metrics on the moduli and the Teichmuller
spaces of Riemann surfaces with very good properties, study their curvatures
and boundary behaviors in great detail. Based on the careful analysis of these
new metrics, we have a good understanding of the Kahler-Einstein metric from
which we prove that the logarithmic cotangent bundle of the moduli space is
stable. Another corolary is a proof of the equivalences of all of the known
classical complete metrics to the new metrics, in particular Yau's conjectures
in the early 80s on the equivalences of the Kahler-Einstein metric to the
Teichmuller and the Bergman metric.Comment: Survey article of our recent results on the subject. Typoes
corrrecte
Hom-quantum groups I: quasi-triangular Hom-bialgebras
We introduce a Hom-type generalization of quantum groups, called
quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative
analogues of Drinfel'd's quasi-triangular bialgebras, in which the
non-(co)associativity is controlled by a twisting map. A family of
quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular
bialgebra, such as Drinfel'd's quantum enveloping algebras. Each
quasi-triangular Hom-bialgebra comes with a solution of the quantum
Hom-Yang-Baxter equation, which is a non-associative version of the quantum
Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be obtained
from modules of suitable quasi-triangular Hom-bialgebras.Comment: 21 page
Recommended from our members
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
Cancer cell lines are a cornerstone of cancer research but previous studies have shown that not all cell lines are equal in their ability to model primary tumors. Here we present a comprehensive pan-cancer analysis utilizing transcriptomic profiles from The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia to evaluate cell lines as models of primary tumors across 22 tumor types. We perform correlation analysis and gene set enrichment analysis to understand the differences between cell lines and primary tumors. Additionally, we classify cell lines into tumor subtypes in 9 tumor types. We present our pancreatic cancer results as a case study and find that the commonly used cell line MIA PaCa-2 is transcriptionally unrepresentative of primary pancreatic adenocarcinomas. Lastly, we propose a new cell line panel, the TCGA-110-CL, for pan-cancer studies. This study provides a resource to help researchers select more representative cell line models
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
In this paper we construct ternary -Virasoro-Witt algebras which
-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie
and Zachos using enveloping algebra techniques. The ternary
Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a
parameter and are not Nambu-Lie algebras for all but finitely many values of
this parameter. For the parameter values for which the ternary Virasoro-Witt
algebras are Nambu-Lie, the corresponding ternary -Virasoro-Witt algebras
constructed in this article are also Hom-Nambu-Lie because they are obtained
from the ternary Nambu-Lie algebras using the composition method. For other
parameter values this composition method does not yield Hom-Nambu Lie algebra
structure for -Virasoro-Witt algebras. We show however, using a different
construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and
Zachos, as well as the general ternary -Virasoro-Witt algebras we construct,
carry a structure of ternary Hom-Nambu-Lie algebra for all values of the
involved parameters
Derivation of the Cubic Non-linear Schr\"odinger Equation from Quantum Dynamics of Many-Body Systems
We prove rigorously that the one-particle density matrix of three dimensional
interacting Bose systems with a short-scale repulsive pair interaction
converges to the solution of the cubic non-linear Schr\"odinger equation in a
suitable scaling limit. The result is extended to -particle density matrices
for all positive integer .Comment: 72 pages, 17 figures. Final versio
- …