422 research outputs found

    On the origin of interface states at oxide/III-nitride heterojunction interfaces

    Get PDF
    The energy spectrum of interface state density, D-it(E), was determined at oxide/III-N heterojunction interfaces in the entire band gap, using two complementary photo-electric methods: (i) photo-assisted capacitance-voltage technique for the states distributed near the midgap and the conduction band (CB) and (ii) light intensity dependent photo-capacitance method for the states close to the valence band (VB). In addition, the Auger electron spectroscopy profiling was applied for the characterization of chemical composition of the interface region with the emphasis on carbon impurities, which can be responsible for the interface state creation. The studies were performed for the AlGaN/GaN metal-insulator-semiconductor heterostructures (MISH) with Al2O3 and SiO2 dielectric films and AlxGa1-x layers with x varying from 0.15 to 0.4 as well as for an Al2O3/InAlN/GaN MISH structure. For all structures, it was found that: (i) D-it(E) is an U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, D-it(E) for SiO2/AlxGa1-x/GaN structures increased with rising x. It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained D-it(E) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (Q(F)) which is not related to D-it(E) and which almost compensates the negative polarization charge (Q(pol)(-))

    Zygomaticomaxillary suture maturation: Part IIĂą The influence of sutural maturation on the response to maxillary protraction

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137741/1/ocr12191_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137741/2/ocr12191.pd

    The Role of Ellis‐Van Creveld 2(EVC2) in Mice During Cranial Bone Development

    Full text link
    EvC syndrome is a type of autosomal‐recessive chondrodysplasia. Previous case studies in patients suggest abnormal craniofacial development, in addition to dwarfism and tooth abnormalities. To investigate how craniofacial development is affected in EvC patients, surface models were generated from micro‐CT scans of control mice, Evc2 global mutant mice and Evc2 neural crest‐specific mutant mice. The anatomic landmarks were placed on the surface model to assess the morphological abnormalities in the Evc2 mutants. Through analyzing the linear and angular measurements between landmarks, we identified a smaller overall skull, shorter nasal bone, shorter frontal bone, and shorter cranial base in the Evc2 global mutants. By comparing neural crest‐specific Evc2 mutants with control mice, we demonstrated that the abnormalities within the mid‐facial regions are not accounted for by the Evc2 mutation within these regions. Additionally, we also identified disproportionate length to width ratios in the Evc2 mutants at all levels from anterior to posterior of the skull. Overall, this study demonstrates a more comprehensive analysis on the craniofacial morphological abnormalities in EvC syndrome and provides the developmental insight to appreciate the impact of Evc2 mutation within the neural crest cells on multiple aspects of skull deformities. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:46–55, 2018. © 2017 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141635/1/ar23692_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141635/2/ar23692.pd

    Radiographic interpretation using high-resolution Cbct to diagnose degenerative temporomandibular joint disease

    Get PDF
    The objective of this study was to use high-resolution cone-beam computed images (hr-CBCT) to diagnose degenerative joint disease in asymptomatic and symptomatic subjects using the Diagnostic Criteria for Temporomandibular Disorders DC/TMD imaging criteria. This observational study comprised of 92 subjects age-sex matched and divided into two groups: clinical degenerative joint disease (c-DJD, n = 46) and asymptomatic control group (n = 46). Clinical assessment of the DJD and high-resolution CBCT images (isotropic voxel size of 0.08mm) of the temporomandibular joints were performed for each participant. An American Board of Oral and Maxillofacial Radiology certified radiologist and a maxillofacial radiologist used the DC/TMD imaging criteria to evaluate the radiographic findings, followed by a consensus of the radiographic evaluation. The two radiologists presented a high agreement (Cohen’s Kappa ranging from 0.80 to 0.87) for all radiographic findings (osteophyte, erosion, cysts, flattening, and sclerosis). Five patients from the c- DJD group did not present radiographic findings, being then classified as arthralgia. In the asymptomatic control group, 82.6% of the patients presented radiographic findings determinant of DJD and were then classified as osteoarthrosis or overdiagnosis. In conclusion, our results showed a high number of radiographic findings in the asymptomatic control group, and for this reason, we suggest that there is a need for additional imaging criteria to classify DJD properly in hr-CBCT images

    Causes of large-scale landslides in the Lesser Himalaya of central Nepal

    Get PDF
    Abstract: Geologically and tectonically active Himalayan Range is characterized by highly elevate

    Insulated gate and surface passivation structures for GaN-based power transistors

    Get PDF
    Recent years have witnessed GaN-based devices delivering their promise of unprecedented power and frequency levels and demonstrating their capability as an able replacement for Si-based devices. High-electron-mobility transistors (HEMTs), a key representative architecture of GaN-based devices, are well-suited for high-power and high frequency device applications, owing to highly desirable III-nitride physical properties. However, these devices are still hounded by issues not previously encountered in their more established Si- and GaAs-based devices counterparts. Metal–insulator–semiconductor (MIS) structures are usually employed with varying degrees of success in sidestepping the major problematic issues such as excessive leakage current and current instability. While different insulator materials have been applied to GaN-based transistors, the properties of insulator/III-N interfaces are still not fully understood. This is mainly due to the difficulty of characterizing insulator/AlGaN interfaces in a MIS HEMT because of the two resulting interfaces: insulator/AlGaN and AlGaN/GaN, making the potential modulation rather complicated. Although there have been many reports of low interface-trap densities in HEMT MIS capacitors, several papers have incorrectly evaluated their capacitance–voltage (C–V) characteristics. A HEMT MIS structure typically shows a 2-step C–V behavior. However, several groups reported C–V curves without the characteristic step at the forward bias regime, which is likely to the high-density states at the insulator/AlGaN interface impeding the potential control of the AlGaN surface by the gate bias. In this review paper, first we describe critical issues and problems including leakage current, current collapse and threshold voltage instability in AlGaN/GaN HEMTs. Then we present interface properties, focusing on interface states, of GaN MIS systems using oxides, nitrides and high-Îș dielectrics. Next, the properties of a variety of AlGaN/GaN MIS structures as well as different characterization methods, including our own photo-assisted C–V technique, essential for understanding and developing successful surface passivation and interface control schemes, are given in the subsequent section. Finally we highlight the important progress in GaN MIS interfaces that have recently pushed the frontier of nitride-based device technology

    Three‐dimensional skeletal mandibular changes associated with Herbst appliance treatment

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136722/1/ocr12154_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136722/2/ocr12154.pd

    Detection of drug-sensitizing EGFR exon 19 deletion mutations in salivary gland carcinoma

    Get PDF
    Activating mutations within the epidermal growth factor receptor (EGFR) identify lung adenocarcinoma patients with improved clinical responses to tyrosine kinase inhibitors gefitinib and erlotinib. By screening salivary gland carcinoma, two drug-sensitizing EGFR exon 19 delE746-A750 mutations were identified in an adenocystic and in a mucoepidermoid carcinoma of the parotid gland
    • 

    corecore