33 research outputs found

    Elasticity of diopside CaMgSi(2)O(6) measured by means of the resonant sphere technique, RST

    Get PDF
    Resonant frequencies for a single crystad diopside sphere are measured accurately and rhirteen elastic moduli are reluced by the least squares calculation, A set of mduli gives theoretical resonant frequencies close enough to the observed ones

    Linear Macropore Installation to Reduce Red-Soil Erosion in Sugarcane Fields

    Get PDF
    This study determines the cause of soil erosion in red soils in sugarcane fields, especially even with the use of subsoiling fissures, and to compare the effectiveness of a novel artificial linear-macropore with the insertion of fibrous material into the fractures. Four column treatments (tillage, subsoiling, linear-macropore with plant residue fillings, and no-tillage-with-mulching) were established. A subsoiler was used to break up hard soil layers to enhance infiltration, whereas mulching reduced the impact of raindrops on the soil. Sugarcane residue was inserted in the empty fissure to reinforce the structure, making linear macropore. Simulated rainfall with 20 mmh−1 was applied to the soil surface for 6 h per day for two days. Surface runoff, soil erosion, and drainage were measured during each run. Erosion was minimal (1/7 reduction), and bottom drainage was observed in the linear-macropore and no-tillage-with-mulching plots. Conversely, due to the formation of an impermeable layer or surface crust, high erosion (0.282 t-C ha−1 yr−1) and decreased drainage levels were detected in the subsoiling and tillage plots. Moreover, the aboveground protrusion of fibrous material at the linear-macropore maintained infiltration, even following crust formation. Field application of these four management strategies revealed the effectiveness of linear-macropore and mulching in reducing surface flow. Linear-macropore application maintains appropriate levels of infiltration, and insertion of plant residue fillings reinforces the macropore structure while also avoiding clogging. Hence, the linear-macropore scheme may represent an effective strategy for reducing surface runoff and red soil erosion

    Prompt improvement of a pressure ulcer by the administration of high viscosity semi-solid nutrition via a nasogastric tube in a man with tuberculosis: a case report

    Get PDF
    INTRODUCTION: Semi-solid nutrition with high viscosity has the advantage of reducing gastroesophageal reflux and diarrhea and shortens the duration of administration compared with liquid nutrition. This is the first report describing the administration of semi-solid nutrition with high viscosity via a nasogastric tube, which achieved a remarkable improvement in the patient's nutritional state. CASE PRESENTATION: A 67-year-old man (mongoloid race, Japanese) with tuberculosis, a pressure ulcer and malnutrition was admitted to our hospital. He also had right hemiplegia, dysphagia and aphasia as sequelae of a cerebral hemorrhage. Before his admission, he had been treated at another hospital with 600 kcal/day of liquid nutrition via a nasogastric tube, which was insufficient and induced severe malnutrition. After he was admitted to our hospital, we increased the quantity of his liquid nutrition without success because of complications, specifically diarrhea and gastroesophageal reflux. As it was difficult to confirm whether or not he would accept gastrostomy feeding, we administered semi-solid nutrition with high viscosity (20,000 mPa x s) via a large-bore nasogastric tube (18 French). Soon after he was started on semi-solid nutrition, his pressure ulcer and malnutrition improved without diarrhea or complications accompanying the large-bore nasogastric tube. CONCLUSION: When patients have problems with liquid nutrition, such as diarrhea or gastroesophageal reflux, semi-solid nutrition via a nasogastric tube is a useful method of achieving improvements in nutritional state in a short period of time

    Muscle Fiber Type-Predominant Promoter Activity in Lentiviral-Mediated Transgenic Mouse

    Get PDF
    Variations in gene promoter/enhancer activity in different muscle fiber types after gene transduction was noticed previously, but poorly analyzed. The murine stem cell virus (MSCV) promoter drives strong, stable gene expression in hematopoietic stem cells and several other cells, including cerebellar Purkinje cells, but it has not been studied in muscle. We injected a lentiviral vector carrying an MSCV-EGFP cassette (LvMSCV-EGFP) into tibialis anterior muscles and observed strong EGFP expression in muscle fibers, primary cultured myoblasts, and myotubes isolated from injected muscles. We also generated lentiviral-mediated transgenic mice carrying the MSCV-EGFP cassette and detected transgene expression in striated muscles. LvMSCV-EGFP transgenic mice showed fiber type-dependent variations in expression: highest in types I and IIA, intermediate in type IID/X, and lowest in type IIB fibers. The soleus and diaphragm muscles, consisting mainly of types I and IIA, are most severely affected in the mdx mouse model of muscular dystrophy. Further analysis of this promoter may have the potential to achieve certain gene expression in severely affected muscles of mdx mice. The Lv-mediated transgenic mouse may prove a useful tool for assessing the enhancer/promoter activities of a variety of different regulatory cassettes

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
    corecore