3 research outputs found

    b tagging in ATLAS and CMS

    Full text link
    Many physics signals presently studied at the high energy collision experiments lead to final states with jets originating from heavy flavor quarks. This report reviews the algorithms for heavy flavor jets identification developed by the ATLAS and CMS Collaborations in view of the Run2 data taking period at the Large Hadron Collider. The improvements of the algorithms used in 2015 and 2016 data analyses with respect to previous data taking periods are discussed, as well as the ongoing developments in view of the next years of data taking. The measurements of the performance of the algorithms on data as well as the dedicated techniques for the identification of heavy flavor jets in events with boosted topologies are also presented. Finally, the effectiveness of heavy flavor jet identification in the complex environment expected during the high luminosity LHC phase is discussed.Comment: 6 pages, Proceeding for the Fifth Annual Large Hadron Collider Physics (LHCP2017) conferenc

    f-treeGC: a questionnaire-based family tree-creation software for genetic counseling and genome cohort studies

    No full text
    Abstract Background The Tohoku Medical Megabank project aims to create a next-generation personalized healthcare system by conducting large-scale genome-cohort studies involving three generations of local residents in the areas affected by the Great East Japan Earthquake. We collected medical and genomic information for developing a biobank to be used for this healthcare system. We designed a questionnaire-based pedigree-creation software program named “f-treeGC,” which enables even less experienced medical practitioners to accurately and rapidly collect family health history and create pedigree charts. Results f-treeGC may be run on Adobe AIR. Pedigree charts are created in the following manner: 1) At system startup, the client is prompted to provide required information on the presence or absence of children; f-treeGC is capable of creating a pedigree up to three generations. 2) An interviewer fills out a multiple-choice questionnaire on genealogical information. 3) The information requested includes name, age, gender, general status, infertility status, pregnancy status, fetal status, and physical features or health conditions of individuals over three generations. In addition, information regarding the client and the proband, and birth order information, including multiple gestation, custody, multiple individuals, donor or surrogate, adoption, and consanguinity may be included. 4) f-treeGC shows only marriages between first cousins via the overlay function. 5) f-treeGC automatically creates a pedigree chart, and the chart-creation process is visible for inspection on the screen in real time. 6) The genealogical data may be saved as a file in the original format. The created/modified date and time may be changed as required, and the file may be password-protected and/or saved in read-only format. To enable sorting or searching from the database, the file name automatically contains the terms typed into the entry fields, including physical features or health conditions, by default. 7) Alternatively, family histories are collected using a completed foldable interview paper sheet named “f-sheet”, which is identical to the questionnaire in f-treeGC. Conclusions We developed a questionnaire-based family tree-creation software, named f-treeGC, which is fully compliant with international recommendations for standardized human pedigree nomenclature. The present software simplifies the process of collecting family histories and pedigrees, and has a variety of uses, from genome cohort studies or primary care to genetic counseling
    corecore