52 research outputs found
Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T
Head-to-tail polymerization of tropomyosin is crucial for its actin binding, function in actin filament assembly, and the regulation of actin-myosin contraction. Here, we describe the 2.1 Å resolution structure of crystals containing overlapping tropomyosin N and C termini (TM-N and TM-C) and the 2.9 Å resolution structure of crystals containing TM-N and TM-C together with a fragment of troponin-T (TnT). At each junction, the N-terminal helices of TM-N were splayed, with only one of them packing against TM-C. In the C-terminal region of TM-C, a crucial water in the coiled-coil core broke the local 2-fold symmetry and helps generate a kink on one helix. In the presence of a TnT fragment, the asymmetry in TM-C facilitates formation of a 4-helix bundle containing two TM-C chains and one chain each of TM-N and TnT. Mutating the residues that generate the asymmetry in TM-C caused a marked decrease in the affinity of troponin for actin-tropomyosin filaments. The highly conserved region of TnT, in which most cardiomyopathy mutations reside, is crucial for interacting with tropomyosin. The structure of the ternary complex also explains why the skeletal- and cardiac-muscle specific C-terminal region is required to bind TnT and why tropomyosin homodimers bind only a single TnT. On actin filaments, the head-to-tail junction can function as a molecular swivel to accommodate irregularities in the coiled-coil path between successive tropomyosins enabling each to interact equivalently with the actin helix
Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors
A bottom-gate, bottom-contact (BGBC) organic thin-film transistor (OTFT) with carrier-doped regions over source-drain electrodes was investigated. Device simulation with our originally developed device simulator demonstrates that heavily doped layers (p+ layers) on top of the source-drain contact region can compensate the deficiency of charge carriers at the source-channel interface during transistor operation, leading to the increase of the drain current and the apparent field-effect mobility. The phenomena expected with the device simulation were experimentally confirmed in typical BGBC pentacene thin-film transistors. The 5-nm-thick p+ layers, located 10 nm (or 20 nm) over the source-drain electrodes, were prepared by coevaporation of pentacene and 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane as an acceptor dopant. Since the molecular doping in this study can increase the drain current without positive shift of threshold voltage, p+ layers were formed precisely on top of the source-drain regions. This study shows that common inferior characteristics of bottom-contact OTFT devices mainly derive from the supply shortage of charge carriers to the channel region. The importance of reliable molecular doping techniques or heavily doped semiconductor materials for improving OTFT device performance is clearly suggested
- …