107 research outputs found
Coagulation potential of immobilised factor VIII in flow-dependent fibrin generation on platelet surfaces.
Coagulation factor VIII (FVIII) plays an essential role in haemostasis. To date, physiologic activity of FVIII circulating in the bloodstream (S-FVIII) is evaluated by classic coagulation assays. However, the functional relevance of FVIII (-von Willebrand factor complex) immobilised on thrombogenic surfaces (I-FVIII) remains unclear. We used an in vitro perfusion chamber system to evaluate the function of I-FVIII in the process of mural thrombus formation under whole blood flow conditions. In perfusion of either control or synthetic haemophilic blood, the intra-thrombus fibrin generation on platelet surfaces significantly increased as a function of I-FVIII, independent of S-FVIII, under high shear rate conditions. This I-FVIII effect was unvarying regardless of anti-FVIII inhibitor levels in synthetic haemophilic blood. Thus, our results illustrate coagulation potentials of immobilised clotting factors, distinct from those in the bloodstream, under physiologic flow conditions and may give a clue for novel therapeutic approaches for haemophilic patients with anti-FVIII inhibitors.博士(医学)・甲第602号・平成25年7月22日The definitive version is available at " http://dx.doi.org/10.1160/TH13-02-0159
全血流動下でのフォンビルブランド因子依存性血栓形成における組織因子の機能特性
Von Willebrand factor (VWF) plays an important role in mediating platelet adhesion and aggregation under high shear rate conditions. Such platelet aggregates are strengthened by fibrin-network formation triggered by tissue factor (TF). However, little is known about the role of TF in VWF-dependent thrombus formation under blood flow conditions. We evaluated TF in thrombus formation on immobilized VWF under whole blood flow conditions in an in vitro perfusion chamber system. Surface-immobilized TF amplified intra-thrombus fibrin generation significantly under both low and high shear flow conditions, while TF in sample blood showed no appreciable effects. Furthermore, immobilized TF enhanced VWF-dependent platelet adhesion and aggregation significantly under high shear rates. Neutrophil cathepsin G and elastase increased significantly intra-thrombus fibrin deposition on immobilized VWF–TF complex, suggesting the involvement of leukocyte inflammatory responses in VWF/TF-dependent mural thrombogenesis under these flow conditions. These results reveal a functional link between VWF and TF under whole blood flow conditions, in which surface-immobilized TF and VWF mutually contribute to mural thrombus formation, which is essential for normal hemostasis. By contrast, TF circulating in blood may be involved in systemic hypercoagulability, as seen in sepsis caused by severe microbial infection, in which neutrophil inflammatory responses may be active.博士(医学)・乙第1388号・平成28年11月24日© The Japanese Society of Hematology 2016The original publication is available at www.springerlink.comThe final publication is available at Springer via http://dx.doi.org/10.1007/s12185-016-2086-
Printed 5-V organic operational amplifiers for various signal processing
The important concept of printable functional materials is about to cause a paradigm shift that we will be able to fabricate electronic devices by printing methods in air at room temperature. One of the promising applications of the printed electronics is a disposable electronic patch sensing system which can monitor the health conditions without any restraint. Operational amplifiers (OPAs) are an essential component for such sensing system, since an OPA enables a wide variety of signal processing. Here we demonstrate printed OPAs based on complementary organic semiconductor technology. They can be operated with a standard safe power source of 5 V with a minimal power consumption of 150 nW, and used as amplifiers, a variety of mathematical operators, signal converters, and oscillators. The printed micropower organic OPAs with the low voltage operation and the high versatility will open up the disposable electronic patch sensing system in near future
犬モデルにおける ex vivo および in vivo 遺伝子治療のための代替遺伝子導入技術の開発
Introduction: Gene therapy have recently attracted much attention as a curative therapeutic option for inherited single gene disorders such as hemophilia. Hemophilia is a hereditary bleeding disorder caused by the deficiency of clotting activity of factor VIII (FVIII) or factor IX (FIX), and gene therapy for hemophilia using viral vector have been vigorously investigated worldwide. Toward further advancement of gene therapy for hemophilia, we have previously developed and validated the efficacy of novel two types of gene transfer technologies using a mouse model of hemophilia A. Here we investigated the efficacy and safety of the technologies in canine model. Especially, validations of technical procedures of the gene transfers for dogs were focused. Methods: Green fluorescence protein (GFP) gene were transduced into normal beagle dogs by ex vivo and in vivo gene transfer techniques. For ex vivo gene transfer, blood outgrowth endothelial cells (BOECs) derived from peripheral blood of normal dogs were transduced with GFP gene using lentivirus vector, propagated, fabricated as cell sheets, then implanted onto the omentum of the same dogs. For in vivo gene transfer, normal dogs were subjected to GFP gene transduction with non-viral piggyBac vector by liver-targeted hydrodynamic injections. Results: No major adverse events were observed during the gene transfers in both gene transfer systems. As for ex vivo gene transfer, histological findings from the omental biopsy performed 4 weeks after implantation revealed the tube formation by implanted GFP-positive BOECs in the sub-adipose tissue layer without any inflammatory findings, and the detected GFP signals were maintained over 6 months. Regarding in vivo gene transfer, analyses of liver biopsy samples revealed more than 90% of liver cells were positive for GFP signals in the injected liver lobes 1 week after gene transfers, then the signals gradually declined overtime. Conclusions: Two types of gene transfer techniques were successfully applied to a canine model, and the transduced gene expressions persisted for a long term. Toward clinical application for hemophilia patients, practical assessments of therapeutic efficacy of these techniques will need to be performed using a dog model of hemophilia and FVIII (or FIX) gene.博士(医学)・乙第1517号・令和3年12月21日© 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/)
- …