398 research outputs found

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Kosterlitz-Thouless transition in three-state mixed Potts ferro-antiferromagnets

    Full text link
    We study three-state Potts spins on a square lattice, in which all bonds are ferromagnetic along one of the lattice directions, and antiferromagnetic along the other. Numerical transfer-matrix are used, on infinite strips of width LL sites, 4L144 \leq L \leq 14. Based on the analysis of the ratio of scaled mass gaps (inverse correlation lengths) and scaled domain-wall free energies, we provide strong evidence that a critical (Kosterlitz-Thouless) phase is present, whose upper limit is, in our best estimate, Tc=0.29±0.01T_c=0.29 \pm 0.01. From analysis of the (extremely anisotropic) nature of excitations below TcT_c, we argue that the critical phase extends all the way down to T=0. While domain walls parallel to the ferromagnetic direction are soft for the whole extent of the critical phase, those along the antiferromagnetic direction seem to undergo a softening transition at a finite temperature. Assuming a bulk correlation length varying, for T>TcT>T_c, as ξ(T)=aξexp[bξ(TTc)σ]\xi (T) =a_\xi \exp [ b_\xi (T-T_c)^{-\sigma}], σ1/2\sigma \simeq 1/2, we attempt finite-size scaling plots of our finite-width correlation lengths. Our best results are for Tc=0.50±0.01T_c=0.50 \pm 0.01. We propose a scenario in which such inconsistency is attributed to the extreme narrowness of the critical region.Comment: 11 pages, 6 .eps figures, LaTeX with IoP macros, to be published in J Phys

    The Reliability of Parafoveal Cone Density Measurements

    Get PDF
    Background Adaptive optics scanning light ophthalmoscopy (AOSLO) enables direct visualisation of the cone mosaic, with metrics such as cone density and cell spacing used to assess the integrity or health of the mosaic. Here we examined the interobserver and inter-instrument reliability of cone density measurements. Methods For the interobserver reliability study, 30 subjects with no vision-limiting pathology were imaged. Three image sequences were acquired at a single parafoveal location and aligned to ensure that the three images were from the same retinal location. Ten observers used a semiautomated algorithm to identify the cones in each image, and this was repeated three times for each image. To assess inter-instrument reliability, 20 subjects were imaged at eight parafoveal locations on one AOSLO, followed by the same set of locations on the second AOSLO. A single observer manually aligned the pairs of images and used the semiautomated algorithm to identify the cones in each image. Results Based on a factorial study design model and a variance components model, the interobserver study\u27s largest contribution to variability was the subject (95.72%) while the observer\u27s contribution was only 1.03%. For the inter-instrument study, an average cone density intraclass correlation coefficient (ICC) of between 0.931 and 0.975 was calculated. Conclusions With the AOSLOs used here, reliable cone density measurements can be obtained between observers and between instruments. Additional work is needed to determine how these results vary with differences in image quality

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    A microchip optomechanical accelerometer

    Get PDF
    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical accelerometers either do not allow for chip-scale integration or require bulky test masses. Here we demonstrate an optomechanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cavity monolithically integrated with a nano-tethered test mass of high mechanical Q-factor. This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical power requirements. Moreover, the nano-gram test masses used here allow for optomechanical back-action in the form of cooling or the optical spring effect, setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure
    corecore