24 research outputs found

    The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury

    Get PDF
    Background : Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury. Methods : To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined. Results : Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH(2)O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH(2)O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH(2)O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH(2)O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008). Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury

    Rule for scaling shoulder rotation angles while walking through apertures.

    Get PDF
    BACKGROUND: When an individual is trying to fit into a narrow aperture, the amplitude of shoulder rotations in the yaw dimension is well proportioned to the relative aperture width to body width (referred to as the critical ratio value). Based on this fact, it is generally considered that the central nervous system (CNS) determines the amplitudes of shoulder rotations in response to the ratio value. The present study was designed to determine whether the CNS follows another rule in which a minimal spatial margin is created at the aperture passage; this rule is beneficial particularly when spatial requirements for passage (i.e., the minimum passable width) become wider than the body with an external object. METHODOLOGY/PRINCIPAL FINDINGS: Eight young participants walked through narrow apertures of three widths (ratio value = 0.9, 1.0, and 1.1) while holding one of three horizontal bars (short, 1.5 and 2.5 times the body width). The results showed that the amplitude of rotation angles became smaller for the respective ratio value as the bar increased in length. This was clearly inconsistent with the general hypothesis that predicted the same rotation angles for the same ratio value. Instead, the results were better explained with a new hypothesis which predicted that a smaller rotation angle was sufficient to produce a constant spatial margin as the bar-length increased in length. CONCLUSION: The results show that, at least under safe circumstances, the CNS is likely to determine the amplitudes of shoulder rotations to ensure the minimal spatial margin being created at one side of the body at the time of crossing. This was new in that the aperture width subtracted from the width of the body (plus object) was taken into account for the visuomotor control of locomotion through apertures

    Single stimulus color can modulate vection

    No full text
    In the present study, we investigated the effects of single color on forward and backward vection. The approaching or receding optical flow observed during forward or backward locomotion was simulated by using random dots with changing size, velocity, and disparity. The dots were presented on a black (Experiments 1 and 2) or white background (Experiment 3) in equiluminant colors; namely, white (or gray), red, yellow, green, or blue. The participant’s task was to press and hold one of three buttons whenever they felt vection. The three buttons corresponded to the subjective strength of vection: strong, same, and weak relative to vection induced by the standard modulus. In Experiments 1 and 2, the participants were also asked to rate the strength and direction of vection after each trial. In Experiment 3, they rated the visibility and the perceived velocity of dot motion. Experiment 1 showed that the induced vection was stronger for the chromatic than for the achromatic dots. Particularly at low velocity conditions (±10 km/h), the vection induced for red dots was stronger than that for the other colored dots. Experiment 2 showed that the order effects of stimulus presentation could not explain the findings of Experiment 1. Experiment 3’s pattern of results was similar to that of Experiment 1, and this suggested that a luminance artifact between color conditions could not account for Experiment 1’s findings. These results suggest that a stimulus color can modulate vection even when a single color is added to the optical flow

    Effect of Depth Order on Linear Vection with Optical Flows

    No full text
    In the present study, the effects of depth order on forward and backward vection were examined using optical flows simulating motion in depth (i.e., approaching or receding). In an experiment, space extending 10 or 20 m in depth was simulated, and the space was divided into foreground and background spaces. In each space, a random-dot pattern was presented and the binocular disparity, size, and velocity of each dot were continuously manipulated in a way consistent with the depth being simulated. Participants reported whether they perceived vection. Latency, total duration (i.e., the amount of time that participants reported perceiving vection during a 60-s presentation), and strong-vection duration (i.e., the amount of time that participants reported perceiving strong vection) were measured. The results indicated that, even though the dots making up the optical flow were much smaller and slower moving in the background space than in the foreground space, vection was strongly dependent on flow motion in the background space. This supports the idea that the perceptual system uses background stimulus motion as a reliable cue for self-motion perception

    Useful Field of View in Simulated Driving: Reaction Times and Eye Movements of Drivers

    Get PDF
    To examine the spatial distribution of a useful field of view (UFOV) in driving, reaction times (RTs) and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field

    Mean spatial margin created on one side of the body when crossing the aperture.

    No full text
    <p>(a) Mean spatial margin for each aperture size under each bar-length and bar-holding condition. (b) The same data but with the results under the two bar-holding conditions are averaged are shown to easily check the consistency with the hypotheses.</p

    Mean absolute angles of shoulder rotation when crossing the aperture.

    No full text
    <p>(a) Mean absolute angles for each aperture size under each bar-length and bar-holding condition. (b)The same data but with the results under the two bar-holding conditions are averaged are shown to easily check the consistency with the hypotheses.</p

    Two hypotheses tested in the present study (use of critical ratio value and creation of minimum spatial margin).

    No full text
    <p>These two hypotheses predict different results regarding the amplitude of shoulder rotations (a) and the spatial margin created on one side of the body for each size of aperture under each bar-length condition (b).</p

    Calculation of spatial margin created in one side of the body at the time of fitting into an aperture.

    No full text
    <p>The r is one half the width of the body, θ is the amplitude of shoulder rotation, and Dx is the egocentric location of the door edge (i.e., the lateral distance from the center of the body midpoint).</p
    corecore